
1

www.mbds-fr.org

MBDS course:
« Native Mobile Programming »

Part 1
Grails Framework and REST API

Gregory Galli

Freelance Teacher and Projet Manager at University of Nice
Sophia Antipolis (UCA) - France

2

Module 1:
Back-end development
Groovy – Grails – Project summary

3

Groovy Language
Overview

4

Context

 Groovy, an alternative to Java

 Grails Framework
 Philosophy
 Advantages
 Architecture

5

Groovy

 Created in 2003

 Object oriented language for the Java platform

 Inspirations

 Superset of Java
 Inherit Java strong points
 Enhance Java
 Can use Java libraries

6

Groovy

 Syntax

 Functionalities
 Closures
 Easy XML / JSON manipulation
 Flexible and complete collection system
 Dynamic typing (def)
 Native support for regular expression
 Native support for markup languages
 String interpolation
 Safe navigation operator (?.)
 Can be executed as a script
 And so on …

7

Groovy – Dynamic typing

 Can use static or dynamic typing
 “def” keyword

 Type checking at runtime

 Pros
 More flexibility
 Quicker coding
 A variable can have his type changed

 Cons
 Need to be more rigorous
 Can lead to unexpected behaviours

8

Groovy – Assertion

 Use of “assert”(assertions) to check some conditions are met

9

// Define a variable

def subject = "Mooc"

// Confirm the variable value

assert subject == "Mooc"

// Produce traces on error

assert subject == "Mook"

// Prints out

"""

Caught: Assertion failed:

assert subject == "Mook"

| |

'Mooc' false

"""

Groovy – Closures

 Anonymous

 Can take arguments

 Return a value

 Can be assigned to a variable

 Can be stored into a variable

 Out of the surrounding scope

 Declaration

 Optional parameters
 Comma separated

 Offers flexibility for simple things

10

{ [closureParams ->] statements }

Groovy – Closures – Declaration

 Often used with implicit parameter “it”

11

// Prints out provided parameter, classic declaration

def closureA = { def var -> println var }

// Equivalents

def closureB = { println it } // implicit parameter

def closureC = { it -> println it } // named parameter, no type defined

def closureD = { def it -> println it } // named parameter, dynamic typed variable

def closureE = { String it -> println it } // named parameter, typed variable

Groovy – Closures – Call

 Different ways to call a Closure

12

// No param closure

def closure = { "mooc" }

// Can be called like this

assert closure() == "mooc"

assert closure.call() == "mooc"

// Closure with param

def closureWithParam = { it }

// Can be called this way

assert closureWithParam("closure") == "closure"

assert closureWithParam.call("closure") == "closure"

Groovy – Closures – Examples

13

// Return true if the provided parameter is odd

def isOdd = { int i -> i % 2 != 0 }

assert isOdd(3) == true

assert isOdd(2) == false

// Return true if the provided parameter is even

def isEven = { int i -> i % 2 == 0 }

assert isEven(3) == false

assert isEven(2) == true

// Return the surface considering the parameters

def rectSurface = { int w, h -> w * h}

assert rectSurface(2, 3) == 6

Groovy – Collections

 Various collection types
 Lists
 Sets
 Maps
 Ranges

 A lot of available methods

 Simple syntax
 Declaration
 Usage

14

Groovy – Collections – List

 Ordered
 0-based index

 Can hold duplicates

 Can hold various types

 Declaration & manipulation

15

Groovy – Collections – List

16

// Empty List

List emptyList = []

// Intergers List

List integerList = [1, 2, 3, 4]

// Mixed List

List mixedList = ['Mooc', 101, [1, 2], 1.01]

 List Declaration

Groovy – Collections – List

17

 Manipulation

// Declare new List

List list = ['Paris', 'London', 'Berlin']

// Checking List data

assert list.size() == 3

assert list.isEmpty() == false

assert list.contains('Berlin') == true

Groovy – Collections – List

18

 Manipulation

// Declare new List

List list = ['Paris', 'London', 'Berlin']

// Editing current List

list.add('Rome')

assert list == ['Paris', 'London', 'Berlin', 'Rome']

assert list.pop() == 'Paris' // would be the last item < groovy 2.5

assert list == ['London', 'Berlin', 'Rome']

// This method is creating a new List

assert list.reverse() == ['Berlin', 'London', 'Paris']

Groovy – Collections – Set

 Not ordered

 Can not hold duplicates

 Can hold various types

 Declaration & manipulation

19

Groovy – Collections – Set

20

 Declaration

// Empty Set

Set emptySet = []

// Set from List

def list = ['Paris', 'London', 'Berlin']

def listToSet = list.toSet()

def listAsSet = list as Set

Groovy – Collections – Map

 Associative Array

 Keys are strings by default

 Not ordered

 Very handy to handle structured data

21

Groovy – Collections – Map

22

 Declaration

// Empty Map

def emptyMap = [:]

// Classic Map

Map map = [france: 'Paris', uk: 'London', germany: 'Berlin', italy: 'Rome']

Groovy – Collections – Range

 Quick way to declare list of sequential values

 Inclusive by default

23

// Classic Range

def inclusiveRange = 11..15

assert inclusiveRange == [11, 12, 13, 14, 15]

// Exclusive notation

def exclusiveRange = 11..<15

assert exclusiveRange == [11, 12, 13, 14]

Groovy – Collections – Generics

 Handy Methods for Collections / Iterables

 plus : Combine collections

 minus : Subtract collections

 each / eachWithIndex : Iterate over Collection item

 collect : Iterate over elements to transform them

 find / findAll / findIndexOf : Filter & search

 flatten : Self explanatory

 split : Divide a collection

24

Groovy – Collections – Plus / Minus

 Combine / Subtract collections

 Create a new collection

25

// Declare new List

List list = ['Paris', 'London', 'Berlin']

// These are creating new Lists

assert list.minus('Paris') == ['London', 'Berlin']

assert list.plus('Rome') == ['Paris', 'London', 'Berlin', 'Rome']

assert list.size() == 3

Groovy – Collections – Each

 Iterate over collection items

26

List list = ['Paris', 'London', 'Berlin']

// Iterate and print value

list.each {

println it

}

// Prints out

London

Berlin

Rome

Groovy – Collections – Each

 Works with all collection type

27

// Declare new Map

Map map = [france: 'Paris', uk: 'London', germany: 'Berlin', italy: 'Rome']

// Iterate and print

map.each {

println "The capital of $it.key is $it.value"

}

// Strict equivalent

map.each { key, value ->

println "The capital of $key is $value"

}

// Prints out

The capital of france is Paris

The capital of uk is London

The capital of germany is Berlin

The capital of italy is Rome

Groovy – Collections – EachWithIndex

 With index if you need to keep track

28

// With index

map.eachWithIndex { key, value, index ->

println "[$index] The capital of $key is $value"

}

// Prints out

"""

[0] The capital of france is Paris

[1] The capital of uk is London

[2] The capital of germany is Berlin

[3] The capital of italy is Rome

"""

Groovy – Collections – Collect

 Iterate over items and transform them

29

// Collect to edit

def newList = map.collect {

key, value ->

[key.toUpperCase(), value]

}

assert newList == [

['FRANCE', 'Paris'],

['UK', 'London'],

['GERMANY', 'Berlin'],

['ITALY', 'Rome']]

Groovy – Collections – Collect

 Can add the collection you want to build as a parameter

30

def newOtherList = []

map.collect(newOtherList) {

key, value ->

[key.toUpperCase(), value]

}

assert newOtherList == [

['FRANCE', 'Paris'],

['UK', 'London'],

['GERMANY', 'Berlin'],

['ITALY', 'Rome']]

Groovy – Collections – Find

31

// Declare new list

def intList = [1, 2, 3, 4, 5, 6, 11, 15]

// Returns the first matching element

assert intList.find{ it > 5 } == 6

// Returns all matching elements

assert intList.findAll{ it > 5 } == [6, 11, 15]

// FindAll will always return a list even if no matching element

assert intList.findAll{ it > 20 } == []

Groovy – Collections – Other

32

// Declare new list

def multiDimList = [1, [2, 3], 4, [5, 6, [7, 8], 9]]

// Flatten any depth collection

def flatList = multiDimList.flatten()

assert flatList == [1, 2, 3, 4, 5, 6, 7, 8, 9]

// Split returns a list with two batches

// First batch contains the matching elements

// Second batch contains the rejected values

assert flatList.split { it < 6} == [[1, 2, 3, 4, 5], [6, 7, 8, 9]]

Groovy – Syntax

May be surprising, Can omit :
 Brackets before methods call
 Dots between successive calls

33

// Declare methods

def turn(def direction) {

println direction

return this

}

def then(def direction) {

println direction

}

// Declare variables

def left = "west"

def right = "east"

// Equivalent to turn(left).then(right)

turn left then right

// Prints out

"""

west

east

"""

Groovy on Rails : Grails
Overview

34

Grails – Context

 Created in 2005 (Graeme Rocher)

 Open source agile full stack development framework

 Based on the Groovy language (Grails  Groovy on Rails (agile))

 Built on top of Spring Boot

 Seamless integration with Java

 Built for the JVM

35

Grails – Concepts & Advantages

 DRY : Don’t repeat yourself

 Convention over configuration

 Model driven architecture

 Easy prototyping (scaffolding)

 Plugins
 Spring security core

36

Grails – Concepts & Advantages

 Vast and helping community

 View technologies – Mainly for HTML / JSON rendering

 Asynchronous capabilities – Promises / Events – RxJava

 Domain-specific languages (DSLs)
 Validation
 Querying
 Rendering

37

Grails – Concepts & Advantages

 GORM
 Hibernate (SQL)
 MongoDB
 Cassandra

 Embedded Application Server
 Tomcat (Plugin)

 In-memory database for development stage (H2)

 Many IDE available
 Intellij IDEA – Ultimate edition (best in my opinion, free student licence)
 Eclipse
 Sublime

38

Grails – Architecture

39

Grails – Used by

40

Grails – Plugins

 Default
 Application Server : Tomcat / Glassfish
 Database : H2 / Hibernate
 Web resources handling : Assets

 Useful
 Security : Spring Security Core / REST
 Payment Service Provider : Paypal / Stripe / …
 Mail handling
 Cron Job handling

 Check before using

 Restrict usage to prevent performance issues

41

Grails
Modelling, Hibernate, GORM & Querying

42

Grails – Modelling

 Main focus when building a Grails application
 Base attributes
 Constraints
 Relations

 Scalability

 Mappings

 Using GORM DSL

43

Grails – Modelling

 Attributes defined with any base type

 Complete list : Hibernate documentation BasicTypes

44

class BaseTypes {

byte[] grails_byte_array

String grails_string

byte grails_byte

Character grails_character

Integer grails_integer

Double grails_double

Float grails_float

Long grails_long

Date grails_date

Boolean grails_Boolean

}

https://docs.jboss.org/hibernate/orm/current/userguide/html_single/Hibernate_User_Guide.html#basic-provided

Grails – Modelling

 Attributes defined with any base type

45

Grails – Modelling

 Relations
 One-to-One
 One-to-Many
 Many-to-Many

46

class User {

String username

// One-to-One

Address address

// One-to-Many (Message) and Many-to-Many (Group)

static belongsTo = [UserGroup]

static hasMany = [messages: Message, groups: UserGroup]

}

Grails – Modelling

 Unidirectional / Bidirectional

 Strong impact on performance

 Bidirectional when needed only

 Properties added by GORM

 id : Long – Primary key – Auto increment

 version : Long – Used to maintain data consistency

47

Grails – Hibernate

 Open source persistence Framework

 Usable in web or classic application environment

 Replace a classic DAL (Data Access Layer)

 Provide high level object method access

 Usable with most relational DBMS

 Used in Grails environment through GORM

48

Grails – GORM

 Grails Object Relational Mapping

 Data Access Framework
 Quick data access code

 GORM for …
 Hibernate (SQL)
 MongoDB (Document oriented)
 Cassandra (NoSQL)
 …

 Illusion of an object oriented database

 Matching the object with a relational database

49

Grails – Hibernate / GORM – Pros

 Accessing high level object instead of tables

 Easy and quick setup and usage
 No need to setup tables or tables properties
 Dynamic finders for prototyping or simple request

 Transaction handling

 Same syntax whatever the DBMS
 Seamless & painless transition if DBMS migration

50

Grails – Hibernate / GORM – Cons

 Can be tough in complex projects

 Adding a new layer hinders performances

 Abstraction
 Does not mean you should not understand what’s behind
 Without a global understanding, will encounter blocking points

51

Grails – GORM – Querying

 Basic CRUD

 Dynamic Finders

 Where Queries

 Criteria Queries

 Hibernate Query Language (HQL)

52

Request
complexity

Performances

Conclusion

 Covered the basics
 Groovy
 Grails

 Next steps, go deeper into Grails
 Project structure
 Modelling
 Data handling
 Security

 Dive into back office development

53

Module 2:
Back-end development
Project Structure – Querying – Specifics – Scaffolding – Security

54

Grails – Project Structure
Assets, Configuration, Plugins & Tools

55

Grails – Project Structure

 Convention over configuration
 File names and location is key

 grails-app : top level directory containing groovy sources
 assets : front-end ressources, managed by Asset Pipeline Plugin
 conf : configurations sources
 controllers : web controllers
 domain : domain classes
 i18n : internationalization files
 init : contains BootStrap.groovy file (init data)
 services : service layer
 taglib : tag libraries
 utils : Grails utilities
 views : contains Groovy Server Pages and JSON Views

 src / …

56

Grails – Project Structure

 Convention over configuration
 File names and location is key

 grails-app : top level directory containing groovy sources
 […]

 src / integration-test : self explanatory

 src / main : groovy sources

 src / test : unit tests

57

Grails – Asset Pipeline Plugin

 Managing and processing static assets

 Available since Grails 2.4

 Process and minify CSS and Javascript files

 Built-in taglibs for proper ressources usage

 Can be extended to compile custom statics
 Coffeescript
 LESS
 SASS
 …

58

Grails – Asset Pipeline Plugin

 Default manifest files with directives

 Default structure
 grails-app/assets/javascript
 grails-app/assets/images
 grails-app/assets/stylesheets

59

Grails – Asset Pipeline Plugin – Serving Assets

 Served by application server during development & tests

 Should be externalized for production
 Dedicated external web server
 CDN

60

grails-app/conf/application.yml

environments:

for specific environment

production:

grails:

specify

assets:

the base url

url: http://cdn.example.com/

the base path

storagePath: /var/www/dedicated/web/server

Grails – Asset Pipeline Plugin – Taglibs

 Use Taglibs to create proper references

61

<head>

%{-- Javascript / CSS inclusion in pages --}%

<asset:javascript src="application.js"/>

<asset:stylesheet src="application.css"/>

</head>

<body>

%{-- Simple reference to asset --}%

<asset:image src="logo.png"/>

</body>

Grails – Configuration

 Not mandatory

 Mainly useful for overrides

 Build configuration  build.gradle

 Runtime configuration  grails-app/conf/application.yml

 Can be externalized

62

file : grails-app/conf/application.yml

server:

Change the application server port this way

port: 8082

Change the context path like this

contextPath: /myProjectName

Grails – Data Sources

 Provide configuration for database link
 Default settings are completely fine to start with

 Environment specific

 Default database : H2

 Swap database
 Provide new driver (dependency / manual JAR)
 Change the driverClassName
 Change the username & password if needed
 Edit the JDBC url
 Restart project
 Done !

63

Grails – URL Mappings

 Defined in grails-app/controllers/package/UrlMappings.groovy

Mapping URL
 Controllers
 Actions
 REST Resources

 No real convention
 defined and editable

64

class UrlMappings {

static mappings = {

"/$controller/$action?/$id?(.$format)?"{

constraints {

// apply constraints here

}

}

"/"(view:"/index")

"500"(view:'/error')

"404"(view:'/notFound')

}

}

Grails – URL Mappings

 View redirection, static views

 Redirect on controller / action

 Redirect on REST Resources

65

"/"(view:"/index")

"500"(view:'/error')

"404"(view:'/notFound‘)

// default action : index

"/"(controller: "main")

// equivalent to

"/"(controller: "main", action: "index")

"/users"(resources: "user")

Grails – URL Mappings

 Can use
 Embedded variables
 Optional variables
 Regular expressions

66

// matching url will be map declared variables

// will match : /promo/product/107

"/$category/product/$id"(controller: "product")

// use ? to make variables optionals

// will match : /promo/product/107

// will also match : /promo/product

"/$category/product/$id?"(controller: "product")

Grails – URL Mappings

 Can use
 Embedded variables
 Optional variables
 Regular expressions

67

// use regular expressions to constraint variables values

// will match : /promo/product/107

// wont match : /promo/product/abc

"/$category/product/$id"

{

controller = "product"

constraints{

id(matches: /\d+/)

}

}

Grails – Bootstrap

 Located under « init » directory

 Contains 2 closures
 “init” closure called at server start
 “destroy” closure called when

 The servlet instance has been taken out
 A timeout period has passed

 Mainly used to setup project essential data
 Define main Users (admin), Roles (security)

 Useful in development phase
 Wipe database data on restart
 Reset base data with Bootstrap at launch
 Always save with options

 Flush : to trigger the persistence operations immediately
 FailOnError : to stop the application server start if something goes wrong

68

Grails – Plugins

 Defined in build.gradle

 Huge plugin base

 Use sparingly

 Default plugins
 Hibernate
 Assets
 Tomcat
 …

 Useful
 Spring Security Core
 Spring Security REST
 Connectors
 …

69

Grails – Modelling
Focus on Modelling, Inheritance, Associations, Constraints & Mapping

70

Grails – Modelling – Inheritance

 Avoid as much as possible
 Performance issues

 Default behaviour
 Gather all properties in the same table
 Can’t force properties to be “not null” at database level

71

class User {

String username

}

class Client extends User {

String clientRef

}

class Prospect extends User {

String prospectRef

}

Grails – Modelling – Inheritance

72

new User(username:"user", address: new Address()).save()

new Client(username:"client", clientRef: "clientRef", address: new Address()).save()

new Prospect(username:"prospect", prospectRef: "prospectRef", address: new Address()).save()

Grails – Modelling – Inheritance

 Non matching properties set to null

 Class field added to keep track

 Default behavior : table-per-hierarchy

 Override : table-per-subclass with mapping DSL

73

Grails – Modelling – Inheritance

74

class User {

String username

static mapping = {

tablePerHierarchy false

}

}

class Client extends User {

String clientRef

}

class Prospect extends User {

String prospectRef

}

Grails – Modelling – Inheritance

 No useless fields
 Saves disk space

 Each request requires table joins
 Computing cost is higher
 Disk access cost is higher

 No systematic better choice  decide according to the situation

75

Grails – Modelling – Inheritance

 Seamless when getting objects

76

// Retrieve all Users an render as JSON

render User.list() as JSON

Grails – Modelling – Associations

 Define how domain class interact

 Unidirectional by default

 Available setups
 Many-to-one
 One-to-One
 One-to-Many
 Many-to-Many

 Complex cases
 Multiple properties of the same type
 Self referential properties
 Deal with GORM incorrect guesses

77

Grails – Associations – Many-to-One

 Simplest case

 Unidirectional

 Multiple Books may reference a same Author

 Book references a single Author instance

78

// Book.groovy

class Book {

String title

Author author

}

// Author.groovy

class Author {

String name

}

Grails – Associations – Many-to-One

 Persist new object with Many-to-one association

79

// Persist a new Book with a new Author

new Book(title: "title", author: new Author(name: "author's name")).save()

// Persist a new Book with an existing Author

new Book(title: "title", author: Author.get(1)).save()

// Persist a new Author, assign it to new Books

def authorInstance = new Author(name: "new author").save()

new Book(title: "title", author: authorInstance).save()

new Book(title: "other title", author: authorInstance).save()

Grails – Associations – One-to-One

 « Kind of » One-to-one

 Address belongs to User
 Behave like a One-to-one

 « Belongs to » implies
 Strong dependency from Address to User
 User cascade saves and deletes
 Address can’t exist on its own

80

// User.groovy

class User {

String username

Address address

}

// Address.groovy

class Address {

static belongsTo = [user: User]

}

Grails – Associations – One-to-One

81

// User.groovy

class User {

String username

Address address

}

// Address.groovy

class Address {

static belongsTo = [user: User]

}
// Save user AND address instance

def userInstance = new User(username: "username")

userInstance.address = new Address()

userInstance.save()

// Delete user AND associated address

userInstance.delete()

Grails – Associations – One-to-One

 Proper One-to-one

 Foreign key in the weak side of the
association (Address)

 hasOne always bidirectional

 Without « belongsTo »
 Cascade save

 With « belongsTo »
 Cascade delete

82

// User.groovy

class User {

String username

static hasOne = [address: Address]

}

// Address.groovy

class Address {

// Simple reference

// won’t cascade deletes

User user

}

Grails – Associations – One-to-One

 Persist new object with One-to-one association

83

// Persist a new User with a new Address

// No need to explicitly define Address > User attribute

new User(username: "username", address: new Address()).save()

// User won't be created, Address is mandatory

new User(username: "username").save()

// Address holds reference to User, cannot create Address on its own

// Address won't be created

new Address().save()

Grails – Associations – One-to-Many

 User has many instances of
Message

 Will create a join table

 Default names for table and columns
customizable with mappedBy

 Default cascading behaviour
 Cascade saves and updates
 Casdade deletes if Message belongs to User

 User’s property : « messages » will be a « Set »
 Can be overridden

84

// User.groovy

class User {

String username

static hasMany = [messages: Message]

}

// Message.groovy

class Message {

String content

}

Grails – Associations – One-to-Many

85

// Instantiate new User

def userInstance = new User(username: "username")

// Add new Message to userInstance

userInstance.addToMessages(new Message(content: "message content"))

// Adding multiple Messages

["message","other message", "another message", "..."].each {

userInstance.addToMessages(new Message(content: it))

}

// Persist userInstance will save User and associated Message

userInstance.save()

// Will delete userInstance without deleting Message (no belongsTo)

userInstance.delete()

Grails – Associations – One-to-Many

 Fetching strategy
 Default : Lazy
 Can be overridden

 Eager fetching
 Need to be very carefull
 Can introduce cyclic queries
 Only when needed

 Collection won’t be full loaded on first access

86

// User.groovy

class User {

String username

static hasMany = [messages: Message]

}

// Message.groovy

class Message {

String content

}

Grails – Associations – One-to-Many

 Fetching a user will fetch
messages references

 When iterating over the
message Set GORM will
fetch the message

 « messages » is a Set
 Unsorted
 Can be overridden using a List instead of a Set

87

// Fetch a User from ID (1)

def userInstance = User.get(1)

// Only messages references at this step

// Iterate over the User messages

// will trigger the fetching of the messages

userInstance.messages.each{

// Print the message content in the console

println it.content

}

Grails – Associations – One-to-Many

 Deleting the « Many » side of the association
 Declare the « Many » side « belongsTo » the « One » side
 Declare an explicit cascading behaviour

88

// Instantiate new User

def userInstance = new User(username: "username")

// Adding multiple Messages

["message","other message", "another message", "..."].each {

userInstance.addToMessages(new Message(content: it))

}

// Persist userInstance will save User and associated Message

userInstance.save()

// Will delete userInstance as well as linked messages

userInstance.delete(flush:true)

Grails – Associations – One-to-Many

 Deleting the « Many » side of the association
 Declare the « Many » side « belongsTo » the « One » side (1)
 Declare an explicit cascading behaviour (2)

 Example case 1.

89

class User {

String username

static hasMany = [messages: Message]

}

class Message {

String content

static belongsTo = [user: User]

}

Grails – Associations – One-to-Many

 Deleting the « Many » side of the association
 Declare the « Many » side « belongsTo » the « One » side (1)
 Declare an explicit cascading behaviour (2)

 Example case 2.

90

class Message {

String content

}

class User {

String username

static hasMany = [messages: Message]

static mapping = {

messages cascade: 'all-delete-orphan'

}

}

Grails – Associations – One-to-Many

 « belongsTo » on the « Many » side of the association
 Change the database structure

 Without « belongsTo »
 Association table

91

Grails – Associations – One-to-Many

 « belongsTo » on the « Many » side of the association
 Change the database structure

 With « belongsTo »
 No association table
 « Many » side references the « One » side

92

Grails – Associations – Many-to-Many

 Inconsistent with ORMs

 Defined with « hasMany » on both sides

 Must declare the owned side of the relationship using « belongsTo »

93

// Author.groovy

class Author {

String name

static hasMany = [books: Book]

// Author is the owned side

static belongsTo = Book

}

// Book.groovy

class Book {

String title

static hasMany = [authors: Author]

}

Grails – Associations – Many-to-Many

Handled like a « One-to-Many » at database level

 Owning side takes responsibility for the persisting
 Cannot cascade saves from the owned side

94

Grails – Associations – Many-to-Many

95

// Will save the Book as well as the Authors (Owning side)

new Book(title: "Art and Science of Big Data")

.addToAuthors(new Author(name: "Serge Miranda"))

.addToAuthors(new Author(name: "Robin Girard"))

.addToAuthors(new Author(name: "Benjamin Renaut"))

.save()

// Will only save the Author (Owned side)

new Author(name: "Serge Miranda")

.addToBooks(new Book(title: "Art and Science of Big Data"))

.addToBooks(new Book(title: "Relational databases"))

.save()

Grails – Associations – Sets & Lists

 At code level a « One-to-Many » is a Set
 Not ordered
 Cannot hold duplicates
 Can be costly if collection is really large
 Can be handled manually (Spring Security)

 Can override Set to List
 Ordered
 Keep unicity constraint from Set
 Automatic index handling
 Add a new column to keep the index

96

Grails – Modelling – Constraints

 Declare constraints within domain class
 Database level constraints
 Code level constraints

 Constraints property
 property name
 named parameters

 Default : Properties are « nullable: false »

 Makes development safer

97

Grails – Modelling – Constraints

98

Grails – Modelling – Constraints

99

Grails – Modelling – Constraints

100

class User {

String username

String email

static hasOne = [address:Address]

static hasMany = [messages: Message]

static constraints = {

// username can’t be empty or null and must be between 5 and 15 char

username blank: false, nullable: false, size: 5..15

// email can’t be empty or null, has a valid email format and is unique

email blank: false, nullable: false, email: true, unique: true

// address for a User has to be defined

address nullable: false

}

}

Grails – Modelling – Mapping

 Custom ORM mapping

 Customize
 Tables name
 Join tables name
 Fields name
 Version handling
 Lazy / Eager fetching
 Caching strategy
 Auto timestamping

 dateCreated
 lastUpdated

 And many more …

101

class User {

String username

String email

static hasOne = [address:Address]

static hasMany = [messages: Message]

static mapping = {

// Custom table name

table 'frontend_users'

// Prevent version handling

version false

// Custom column name

username column: 'user_name'

// Eager fetching for messages

messages lazy: false

}

}

Grails – Modelling – Mapping

 Custom ORM mapping

 Customize
 Tables name
 Join tables name
 Fields name
 Version handling
 Lazy / Eager fetching
 Caching strategy
 Auto timestamping

 dateCreated
 lastUpdated

 And many more …

102

class User {

[…]

static hasMany = [messages: Message]

String description

Date dateCreated

Date lastUpdated

static mapping = {

// Disable autotimestamping

autoTimestamp false

// Force field type to 'text'

description type: 'text'

// Custom join table

messages joinTable: [name : 'user_messages',

key : 'user_id',

column: 'message_id']

}

Grails – Modelling – Mapping

 Cascade behaviour
 save-update : cascades only saves and updates
 delete : cascades only delete
 all : cascades saves, updates and deletes
 all-delete-orphan : only with one-to-many, cascades all and delete child when removed

from association, also delete children when parent is deleted
 other cases : http://gorm.grails.org/6.0.x/hibernate/manual/#customCascadeBehaviour

 Defaults
 hasMany cascades save-update
 belongsTo cascades all-delete-orphan

103

class User {

static hasMany = [messages: Message]

static mapping = {

// Define cascade behaviour

messages cascade: 'all-delete-orphan'

}

}

http://gorm.grails.org/6.0.x/hibernate/manual/#customCascadeBehaviour

Grails – Controllers
Structure & scopes

104

Controllers – Basics

 Handle requests

 Return responses

 Convention / default configuration
 Each action maps to a URI (cf. UrlMappings.groovy)
 Default action within controller

 If index action is defined, it’s the default one

105

// default overridable value

static defaultAction = "list"

Controllers – Scopes (Objects)

 Define objects used to store variables

 Accessible from controllers

 Access using the scopes name in controllers

 5 Scopes available
 servletContext
 session
 request
 params
 flash

106

Controllers – Scopes (Objects)

 servletContext
 Instance of ServletContext
 Also know as Application scope
 Available across the entire web application
 One context per web application per Java Virtual Machine

 session

 request

 params

 flash

107

Controllers – Scopes (Objects)

 servletContext

 session
 Instance of HttpSession
 Used to store information associated to a user owning an active session
 Usually handled with cookies

 request

 params

 flash

108

Controllers – Scopes (Objects)

 servletContext

 session

 request
 Used to store information relative to the current request
 Instance of HttpServletRequest
 Contains all the information about the request

 Cookies
 Format
 Locales
 Security definitions
 Request data
 Host information
 …

 params

 flash

109

Controllers – Scopes (Objects)

 servletContext

 session

 request

 params
 Multi dimensional mutable map
 Same scope (range) as request

 Sort of a “map version” of the request scope

 Contains all request parameters
 Usually use this scope to get request GET / POST parameters

 Often used to perform data binding

 flash

110

Controllers – Scopes (Objects)

 servletContext

 session

 request

 params
 Called url

 params scope content

 flash

111

http://myserver.url/test?f_name=first_name&l_name=last_name

Controllers – Scopes (Objects)

 servletContext

 session

 request

 params

 flash
 Temporary scope
 Information available for current AND next request
 Flushed after the next request
 Useful for specific cases like defining data before a redirect

 Often used to display confirmation or informative messages about the previous action

112

Controllers – Scope (range/reach)

 Define the scope (range/reach) of a controller

 Default scope for controller is prototype

 Can be overridden globally (application.yml)

 3 scopes available
 prototype
 session
 singleton

113

Controllers – Scope (range/reach)

 prototype
 A new controller instance is created for each request

 session
 A new controller instance is created for each user session

 singleton
 A unique global instance is created and shared
 Care with this scope : do not set user specific properties as it will be shared with everyone

114

Controllers – Interceptors

 Based on controllers

 Used to trigger some actions
 Before controller / action execution
 After controller / action execution
 After the view rendering

 Can include / exclude controllers / actions based on names
 Can use regular expressions

 Can define order / priority notion

 Can be used for basic security implementation

115

Grails – Controllers – Data handling
Data binding & response handling

116

Data handling

 Data binding
 Transition between the web / form request data type to Groovy / Java objects
 Data validation
 Security

 Responding
 How to render data to the “user”
 Formats
 Using converters
 Marshallers
 Handy methods (respond)
 JSONBuilder

117

Data handling – Binding

 Request to the server
 Forms
 Direct HTTP invocation

 Convert String / Numeric content of the request to the real property type

118

class User {

String username

Integer age

}

// Data is set in a map

def map = [username: "username", age: "50"]

// we then bind data to the model object

def newUserInstance = new User(map)

// and save the newly created User

newUserInstance.save()

Data handling – Binding

 Working with associations
 Single reference

119

class User {

String username

Integer age

static hasOne = [address: Address]

}

// Data is set in a map

def map = [username: "username", age: "50", address: [address: "3 Groovy Place"]]

class Address {

String address

User user

}

Data handling – Binding

 Working with associations
 One-to-Many

120

class User {

String username

Integer age

static hasOne = [address: Address]

static hasMany = [messages: Message]

}

// Data is set in a map

def map = [username: "username", age: "50", address: [address: "3 Groovy Place"],

"messages[0]": [content: "Message content"],

"messages[1]": [content: "Other message content"]]

class Message {

String content

static belongsTo = [user: User]

}

Data handling – Binding

 Can be used to update data
 Slightly different syntax

121

// Load user

def userInstance = User.get(1)

// Data is set in a map

def map = [username: "username", age: "50", address: [address: "3 Groovy Place"],

"messages[0]": [content: "Message content"],

"messages[1]": [content: "Other message content"]]

// we then bind data to the model object this way

userInstance.properties = map

// and save the updated user

userInstance.save(flush: true)

Data handling – Binding

 Many other possibilities and cases

 Documentation, pretty rich on this subject

 Can get around binding data manually
 Retrieve data from the request
 Control format
 Update properties accordingly

122

Data handling – Response

 Model and views

 Respond method

 WithFormat method

 Builders

 Marshallers

123

Data handling – Response - Model and views

 Model for controllers is a Map handed to the view

 Different ways to hand this model to the view

 Selecting the view
 Handling with convention
 Specific rendering

124

Data handling – Response - Model and views

 Declare and return a Map instance

 Convention for view selection

125

def show()

{

// Render the user instance in the "user" variable

[user: User.get(params.id)]

}

/views/controllerName/actionName.gsp

Data handling – Response - Model and views

 Example : Calling - http://myserver.url/user/show?id=1

 Will render
 Data : User instance in a “user” variable
 View : Will target the view defined under

126

// UserController.groovy

def show()

{

// Render the user instance in the "user" variable

[user: User.get(params.id)]

}

/views/user/show.gsp

http://myserver.url/user/show?id=1

Data handling – Response - Model and views

 Other methods
 return ModelAndView
 render method

127

// Render the user instance in the "user" variable

[user: User.get(params.id)]

// Strictly equivalent

return new ModelAndView("/user/show", [user: User.get(params.id)])

// Also equivalent

render(view: "/user/show", model: [user: User.get(params.id)])

Data handling – Response - Respond

 Preferred way to return data

 Autonomously handle content negotiation analysing
 HTTP Header “Accept”
 Request parameter
 URI extension

 Find the best suited matching mime type

 Tries to render the response with the corresponding type

128

Content negotiation

 Default mime types

 Defined in application.yml

129

types:

all: '*/*'

atom: application/atom+xml

css: text/css

csv: text/csv

form: application/x-www-form-urlencoded

html:

- text/html

- application/xhtml+xml

js: text/javascript

json:

- application/json

- text/json

multipartForm: multipart/form-data

pdf: application/pdf

rss: application/rss+xml

text: text/plain

hal:

- application/hal+json

- application/hal+xml

xml:

- text/xml

- application/xml

Data handling – Response - Respond

 Example

130

class User {

String username

Integer age

static hasOne = [address: Address]

static hasMany = [messages: Message]

}

// UserController.groovy

def list()

{

// Will try to handle content negotation

// Then return the data the most appropriate way

respond User.list()

}

Data handling – Response - Respond

 Calling - http://myserver.url/user/list

 From web browser
 Will try to return corresponding web page (HTTP Error 500 if page does not exist)

 Forging HTTP request (with cURL for example) without any hint about type gives
the same result
curl http://myserver.url/user/list -I

 Will return HTTP/1.1 500 if pages does not exist
 Will return de page html content if it exist

 Reminder about conventions

131

http://myserver.url/user/list
http://myserver.url/user/list

Data handling – Response - Respond

 Same scenario with “Accept” header set
curl http://myserver.url/user/list -H "Accept: application/json“

 Will return HTTP/1.1 200, meaning “OK” with data

132

[

{

"id":1,

"address":{"id":1},

"age":25,

"username":"username-5",

"messages":[{"id":1}]

}

]

http://myserver.url/user/list

Data handling – Response - Respond

 Can alternatively set the format using URI extension
curl http://myserver.url/user/list.JSON

 Will return HTTP/1.1 200, meaning “OK” with data

133

[

{

"id":1,

"address":{"id":1},

"age":25,

"username":"username-5",

"messages":[{"id":1}]

}

]

http://myserver.url/user/list.JSON

Data handling – Response - WithFormat

 Objective is the same

 Do not handle any autonomous content negotiation analysis

 Way to provide specific rendering for each content type

 Useful when each content type should not render the same data

 Wildcard to handle « all the other cases »

134

// Store the user list

def userList = User.list()

// Specific rendering for predefined content types

withFormat {

html {render (template: 'user', model:[userList: userList])}

json {render userList as JSON}

'*' {render userList as XML}

}

Data handling – Response – Builder

 Used to build specific response format

 Handy for isolated needs

 No opportunity to customize global rendering for an object
 Use marshallers instead

 Extremely verbose and messy

135

Data handling – Response – Builder

136

def userList = User.list()

def builder = new JsonBuilder()

// Build JSON

def result = builder.users {

// Iterate over each user of the list

userList.each {

// Create new node for each

User userInstance -> user {

// Declare all properties

id userInstance.id

address (id: userInstance.address.id)

age userInstance.age

username userInstance.username

// Can go deeper in associations

messages {

userInstance.messages.each {

Message messageInstance -> message(id: messageInstance.id)

}

}

}

}

}

// Render content as String

render builder.toPrettyString()

Data handling – Response – Marshallers

 Extremely useful if you need to customize the rendering of a given Object

 Same syntax as Builder
 Also extremely verbose and messy

 Allow global declarations

 Can be declared
 In the Bootstrap.groovy but not ideal
 In the Groovy sources directory, cleaner (src/main/grooy)

 Alternatively some plugins helps to keep project cleaner

 Simply a closure returning map on domain class

 Have to build custom marshaller for
 Domain class
 Domain class collection

137

Data handling – Response – Marshallers

138

// Register marshaller on domain class

JSON.registerObjectMarshaller(User)

{

def result = [:]

result.id = it.id

result.age = it.age

result.username = it.username

// Should also declare custom marshaller for associations

// Address & Message

result.address = it.address

result.messages = it.messages

return result

}

Grails – Services
Basics

139

Services – Basics

 Should contain all the reusable business logic
 Avoid business logic in controllers

 Located under « grails-app/services » directory

 Convention : Class name should end with « Service »

 Often in charge of persistence operation
 Should be Transactional in most cases
 Default Transactional before Grails 3.1
 On demand since

 Transactional Annotation
 withTransaction method

140

Reminder – Transactions – A.C.I.D.

 Transactional environment must respect rules : A.C.I.D. properties

 A for Atomicity
 Most basic principle of transactions
 Either everything or nothing is saved
 Commonly achieved by using BEGIN, COMMIT and ROLLBACK keywords

 Once a transaction is started (BEGIN)
 Everything will be executed and saved (COMMIT)
 Or everything will be reverted to its original state (ROLLBACK)

 In Grails environment, Exceptions throw within a transaction can trigger a rollback
 Rollback can occur event when not explicitly called

141

Reminder – Transactions – A.C.I.D.

 C for Consistency
 Database state before and after transaction must respect unicity, foreign key or other

constraints
 Consistency must be preserved
 Some exceptions for the « in the middle » state

 I for Isolation
 Most difficult issue
 Define how to handle concurrent read / update / delete on a database
 The data I am going to update may have changed between the time read it and the moment I

will update
 Write the data without checking may revert previous changes
 Revert the changes I was going to make cancels an action that should have been executed
 Going in the middle may lead to a data corruption in the database

142

Reminder – Transactions – A.C.I.D.

143

Transation A

/

Retrieve User « Bob »

From database

Set User Score (12)

to 14

Commit changes

User score = 14

/

Transation B

Retrieve User « Bob »

From database

/

Update User Score

Score = Score (12) + 1

/

Commit changes

User score = 13

I for Isolation

 Many mechanism to handle this
 Customizable isolation level
 Depends on the DBMS

 Drawback : Deadlock

 Forces DBMS to Rollback “some” transactions

Reminder – Transactions – A.C.I.D.

144

 D for Durability
 If a commit is validated by the DBMS data integrity must be maintained
 Even if

 An error occurs
 Server is shut down

 Server must make sure data are not lost

 Conclusion
 Transactions are essentials for data integrity
 Transactions will lead to issues that should be resolved with good development practices

Services – @Transactional

 Can define a service as « Transactional » with this Annotation

 Can fine tune Transactional behaviour
 readOnly option

 Can override at method level

 Rollback triggered on RuntimeException
throw

145

@Transactional

class UserService {

def create() { }

@ReadOnly

def list() { }

@Transactional(readOnly = true)

def get() { }

@NotTransactional

def doThis() { }

}

Services – withTransaction

 Programmatic transaction

 No annotation needed

146

class UserService {

def create(String name, Integer age) {

User.withTransaction {

status ->

new User(name: name, age: age).save()

}

}

}

Services – withTransaction

 Programmatic rollback using TransactionStatus

setRollbackOnly method will set the transaction state as “rollback-only”

147

def edit(Long id, String name, Integer age) {

User.withTransaction {

status ->

def userInstance = User.get(id)

userInstance.name = name

userInstance.age = age

// If conditions are not met, rollback

if (age < 18)

status.setRollbackOnly()

else userInstance.save()

}

}

Services – Scopes

 Like Controllers Services has scopes

 Default scope
 Singleton – One overall instance of the service

 Available scopes
 Prototype – new Service instance for each injection
 Request – new Service per request
 Session – new Service for each user session
 Flash – new Service for current and next request
 Flow – new Service for the scope of the flow (web flow)
 Conversation – new Service for the scope of the conversation (web flow)

148

Services – Injection

 Usage after injection

 Injection by convention

 Same goes for
 Services
 Bootstrap
 Taglibs

149

// UserService.groovy

class UserService {

def create(…) {

[…]

}

}

// UserController.groovy

class UserController {

// Injection by name (first is lower case)

def userService

// Can define type, equivalent

UserService userService

def index() {

[…]

userService.create("Bob", 25)

[…]

}

}

Grails – GORM & Hibernate
Querying

150

Grails – GORM – Querying – Basic CRUD

 Create

 Create an object instance

 Call save() method to ask Hibernate to persist

151

// Create an object instance

def exampleInstance = new Example(name: "name", rating: 10, isValid: true)

// Ask GORM > Hibernate to persist this instance

exampleInstance.save()

class Example {

String name

Integer rating

Boolean isValid

}

Grails – GORM – Querying – Basic CRUD

 save & delete
 flush option : ask an immediate flush of the persistence context, persist or delete

immediately
 returns null on validation fail

 save specific options
 validate : define if validation should be skipped
 insert : define if Hibernate should use SQL INSERT, useful to clarify INSERT / UPDATE when

assigning ID
 failOnError : if set to “true”, will throw an exception and stop the application server if

validation fails. Must use when setting essential data.
 deepValidate : default “true”, if set to false, do not validate associations

152

Grails – GORM – Querying – Basic CRUD

 Example

153

// Instantiate new User

def userInstance =

new User(username: "username",

email: "user@email.com",

description: "description",

address: new Address())

.addToMessages(new Message(content: "message content"))

// If immediate save is not successful (validation fail)

if (!userInstance.save(flush: true))

println "Validation failed, User has not been saved to database"

Grails – GORM – Querying – Basic CRUD

 Read

 Choose wisely, strong impact long term

154

// Retrieve the object from database

def exampleInstance = Example.get(1)

// Retrieve a read-only object from the database

def exampleInstanceReadOnly = Example.read(1)

// Retrieve a proxy for the designated object instance

def exampleInstanceLoad = Example.load(1)

Grails – GORM – Querying – Basic CRUD

 Update
 Load object instance
 Edit properties
 Call persist method

 Delete
 Same as Create with delete() method

155

// Update

def exampleInstance = Example.get(1)

exampleInstance.name = "new name"

exampleInstance.save()

// Delete

exampleInstance.delete()

Grails – GORM – Querying - Dynamic Finders

 Dynamic Finders
 “Auto-Magically” methods generated using code synthesis at runtime
 Based on the properties of the class
 Use like a static method
 Ideal for simple queries

 Quickly difficult to read / understand with long queries
 No optimisation

 Where Queries

 Criteria Queries

 Hibernate Query Language (HQL)

156

Grails – GORM – Querying - Dynamic Finders

 Data fetching

157

// Get from ID, uses cache, one request

def userInstance = User.get(1)

// Strictly identical using dynamic finders

// Slower than previous method

def sameUserInstance = User.findAllById(1)

// Get all

def allUsers = User.list()

def alsoAllUsers = User.getAll()

// Get & get all on specific property

def user = User.findByUsername("username")

def userList = User.findAllByEmailLike("%@email.com")

Grails – GORM – Querying - Dynamic Finders

 Data fetching

158

// Use this when you need all raw data

def userList = User.getAll()

// Same as getAll, can use HQL, support pagination

def sameUserList = User.findAll("from User as u where u.username=?",

['username'],

[max: 10, offset: 5])

// Same as getAll, support pagination and few more options

def anotherUserList = User.list(max: 10, offset: 5)

 Dynamic Finders

159

class Book {

String title

Author author

}

class Author {

String name

}

def bookInstance = Book.findByTitle("title")

assert bookInstance instanceof Book

def bookList = Book.findAllByTitle("title")

assert bookList instanceof List // even if empty or only one entry

def authorInstance = Author.findByName("authorsName")

def otherBookInstance = Book.findByTitleLikeAndAuthor(“%title%", authorInstance)

Grails – GORM – Querying - Dynamic Finders

 Operators
 InList
 Like / Ilike
 LessThan / LessThanEquals / GreaterThan / GreaterThanEquals
 IsNull / IsNotNull
 Between
 Rlike
 NotEqual
 InRange

160

Grails – GORM – Querying - Dynamic Finders

 Useful for simple cases

 Quickly messy

161

Grails – GORM – Querying - Dynamic Finders

Grails – GORM – Querying – Where Queries

 Dynamic Finders

 Where Queries
 More flexible than Dynamic finders
 Less verbose than Criteria
 Use regular Groovy comparison operators
 Two steps

 Build Query
 Execute request

 Criteria Queries

 Hibernate Query Language (HQL)

162

Grails – GORM – Querying – Where Queries

163

Operators Description

== Strict equality

!= Difference

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

in Contained within list

==~ Case sensitive like

=~ Case insensitive like

Grails – GORM – Querying – Where Queries

 Examples

164

class Book {

String title

Author author

}

class Author {

String name

}

// Build the query

def bookQuery = Book.where { title == "title" }

// Execute the built query

Book bookInstance = bookQuery.find()

List bookList = bookQuery.findAll()

// Alternative for immediate execution

List otherBookList = Book.findAll { title == "title" }

List sortedBookList = Book.findAll (sort: "title") { title == "title" }

Grails – GORM – Querying – Where Queries

165

Method Description

second / minute / hour The second / minute / hour of a date property

day / month / year The day / month / year of a date property

lower / upper Converts a string

length The length of a string

trim Trims a string

class Comment {

Date dateCreated

}

// Select comments where creation year is 2019

def commentQuery = Comment.where {

year(dateCreated) == 2019

}

Grails – GORM – Querying – Where Queries

 Complex queries

166

def bookQuery = Book.where {

// Complex query on title

(title ==~ "%title%" && title != "wrong title")

// Query on association

author { name ==~ "%authorsName%" && name != "authorsName1" }

}

Book bookInstance = bookQuery.find()

Grails – GORM – Querying – Where Queries

167

Subquery functions Description

avg The average of all values

sum The sum of all values

max The maximum value

min The minimum value

count The count of all values

property Retrieves a property of the resulting entities

Grails – GORM – Querying – Where Queries

 Subqueries
 Impossible with Dynamic finders

168

// Select comments with rating above average

def commentQuery = Comment.where {

rating > avg(rating)

}

// Adding additional criteria with closure

// Select comments

// > with rating above average rating where comment author is like Bob%

// > where comment author is not Bob

def otherCommentQuery = Comment.where {

rating > avg(rating).of { author ==~ "Bob%" } && author != "Bob"

}

class Comment {

Integer rating

String comment

String author

static belongsTo = Book

}

Grails – GORM – Querying – Criteria

 Dynamic Finders

 Where Queries

 Criteria Queries
 More flexible than Where queries
 A lot more verbose than Where queries
 Build with createCriteria() or withCriteria() method
 Top level conditions bound with logical “AND”
 Can group criteria with and / or / not blocks
 Last resort before using HQL

 Hibernate Query Language (HQL)

169

Grails – GORM – Querying – Criteria

170

Method Description

eq Strict equality

ne Difference

gt Greater than

lt Less than

ge Greater than or equal

le Less than or equal

inList Contained within list

like Case sensitive like

ilike Case insensitive like

Grails – GORM – Querying – Criteria

 Example

171

// Create criteria on Comment domain

def criteria = Comment.withCriteria {

// Check "author" property value is equal to "Bob"

eq("author","Bob")

// Check the "comment" property is like "%comment%" with case insensitive

ilike("comment","%comment%")

// Or rating value is greater than 3

or {

gt("rating", 3)

}

}

Grails – GORM – Querying – HQL

 Dynamic Finders

 Where Queries

 Criteria Queries

 Hibernate Query Language (HQL)
 Most flexible option
 Addressing queries directly to the ORM
 Lesser abstraction, better performances overall
 Building queries with find(), findAll() or executeQuery() methods
 Better than SQL to remain compliant with any DBMS

172

Grails – GORM – Querying – HQL

 Example

173

// Classic HQL select

def exampleInstance = Example.find("from Example as e where e.name = 'name'")

// With named paramter, always use this method

def otherExampleInstance =

Example.find("from Example as e where e.name = :name",

[name: "name"])

Grails – GORM - Conclusion

174

Module 3:
REST API
Concepts – Development – Testing – Security

175

REST API
Concepts

176

Plan

 API REST

 Principe d’implémentation

 Verbes HTTP

 Génération de messages

 HTTP Status Code

 Formats d’échange

 HATEOAS : HAL

 Exemple détaillé

 Mécanismes de protection

177

REST

 Born around 2000

 Roy Fielding PhD

 REpresentational State Transfer

 Relies entirely on HTTP

 Accessing resources

 HTTP verbs usage

 REST  RESTful

178

REST & SOAP

REST
 Architectural principles

 SOAP
 Specification of a standard communication protocol

179

REST & SOAP

 Architectures to provide web

 Major differences
 Implementation
 Readability
 WSDL

 Required message format
 Accessible methods
 Service location

180

REST & SOAP – Pros & Cons

 REST
 Achitecture / Pattern
 Format agnostic
 Relies entirely on HTTP
 Lightweight
 Easily readable
 Cache handling (HTTP GET)
 Should provide documentation
 Stateless
 No overload
 Less verbose
 No added functionalities (Security ?)

181

 SOAP
 Protocol
 XML only
 Not limited to HTTP
 Heavy duty
 Less readable
 HTTP POST, no Cache
 WSDL
 Either Statefull or Stateless
 SOAP Enveloppe + Optional Headers
 Well structured
 Optional layers to add functionalities

REST & SOAP

 No real winner
 Both viable solution for different cases

 SOAP
 Security is a must

 Handling health data
 Banking area

 Need other layers to add functionalities

 REST
 Prototypes
 Need for a high Client – Server segmentation
 Need something else than XML

182

REST – Properties & Constraints

 Client – Server Segmentation
 Improve portability of user interfaces
 Improve scalability

 Focus on Server

 Independent components
 Simplifies evolutions

 Cacheability
 Clients and Servers can cache responses data
 Responses must be declared as cacheable (if it’s true)

 Prevent User from getting outdated or wrong data

 Improve extensibility

183

REST – Properties & Constraints

 Stateless
 State management is achieved by the Client
 Server do not store any context about Client
 Improve Client – Server segmentation
 Client requests must contain all necessary information to allow Server to respond

accordingly
 Exception for session information storage

 So User doesn’t have to send identification data each time

 No permanent link between Client and Server
 No Server monopolization by a Client
 No Server saturation if handling multiple Clients at once
 Better extensibility

184

REST – Properties & Constraints

 Layered system
 System may be layered with hierarchy notion

 Constrain component behaviour
 Each component cannot access component beyond n+1 or n-1

• Each component is less complex

• Reduce overall complexity

 Ability to handle growing needs
 Load balancers
 Intermediary servers
 Must be transparent

 Drawback, more layers, more latency
 Can be limited with shared caches

185

REST – Properties & Constraints

 Code on demand (Optional)
Server can temporarily extend client functionalities providing executable code

 Java applets
 Javascript

 Increase flexibility
 Reduce visibility
 Security

186

REST – Properties & Constraints

 Uniform interface – 4 constraints
 Resources identification

 Use URIs to idenfify a resource
 Representation is not the resource itself
 Allow components to evolve independently

 Resource manipulation through representations
 Once a resource is known, can manipulate with HTTP methods (GET, POST, PUT & DELETE)

 Self descriptive messages
 Each message include enough information to understand how to handle it (formats, cache timestamps)

 Hypermedia as the engine of application state (HATEOAS)
 Responses should include links, allowing client to « browse » available actions on the current resource

 Pros & cons
 Data is normalized, structire is predictable
 Component evolution is easier
 Client side implementation can be more challenging
 Reduce overall performances

187

REST API
Implementation principle

188

REST – Implementation principle

 Define resources and resources collections

 Create resources
 Attributes
 Constraints

 Define exchange format
 Unique format
 Multi format

189

REST – Implementation principle

 Message semantic linked to HTTP methods

 HTTP Verbs / Methods RFC2616
 GET : Retrieve a resource / resource collection representation
 POST : Create a new resource
 PUT / PATCH : Update an existing resource
 DELETE : Delete a resource
 HEAD : Retrieve metinformation about a resource (~GET)

 Should not have any body
 Only metadata

OPTIONS : Determine requirements and available actions without initiating a resource
retrieval
 Underestimated part of HTTP protocol
 Can be used to improve services interconnection

190

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

REST – Format handling

 Client asks format with « Accept » Header

 Server confirms with « Content-type » Header

191

Accept: <MIME_type>/<MIME_subtype>
Accept: <MIME_type>/*
Accept: */*

Content-Type : <MIME_type>/<MIME_subtype>
Content-Type : <MIME_type>/*
Content-Type : */*

REST API
HTTP Methods

192

REST – HTTP Methods – GET

 Used to retrieve a resource representation
 No body
 Parameters after URI
 Cacheable
 Bookmarkable

 Never create / update / delete a resource

 Idempotent

 Return
 HTTP 200 (OK)
 HTTP 404 (NOT FOUND)
 HTTP 400 (BAD REQUEST)

193

REST – HTTP Methods – POST

 Used to create a resource
 Not cacheable
 Not bookmarkable

 Alternative to GET when too much parameters

 Return
 HTTP 201 (CREATED)
 HTTP 204 (NO CONTENT)
 HTTP 404 (NOT FOUND)
 HTTP 400 (BAD REQUEST)

194

REST – HTTP Methods – PUT

 Used to update a resource
 Not cacheable
 Not bookmarkable

 Some APIs create resource if targetted resource is not found

 Idempotent

 Return
 HTTP 200 (OK)
 HTTP 201 (CREATED)
 HTTP 204 (NO CONTENT)
 HTTP 404 (NOT FOUND)
 HTTP 400 (BAD REQUEST)

195

REST – HTTP Methods – PATCH

 Used to update a resource
 Not cacheable
 Not bookmarkable

 Should be preferred to PUT for partial updates

 Return
 HTTP 200 (OK)
 HTTP 204 (NO CONTENT)
 HTTP 404 (NOT FOUND)
 HTTP 400 (BAD REQUEST)

196

REST – HTTP Methods – DELETE

 Used to delete a resource
 Not cacheable
 Not bookmarkable

 Return
 HTTP 200 (OK)
 HTTP 204 (NO CONTENT)
 HTTP 404 (NOT FOUND)
 HTTP 400 (BAD REQUEST)

197

REST – HTTP Methods – OPTIONS

 Used to retrieve available communication options
 Not cacheable
 Not bookmarkable

 No action on resources

 Return
 HTTP 200 (OK)
 HTTP 404 (NOT FOUND)

198

HTTP/1.1 200 OK
Allow: GET,HEAD,POST,OPTIONS
Content-Type: text/html; charset=UTF-8
Date: Wed, 25 Sep 2019 13:17:54 GMT
Content-Length: 0

REST – HTTP Methods – HEAD

 Used to retrieve metainformation
 Cacheable
 Not bookmarkable

 Should not return any body

 Same header as GET on same resource

 Return
 HTTP 200 (OK)
 HTTP 404 (NOT FOUND)

199

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Date: Wed, 25 Sep 2019 13:17:54 GMT
Content-Length: 15426
Last modified: Tue, 24 Sep 2019 00:00:00 GMT

REST API
Exchange

200

REST – Exchange (1)

 Client side – Request building

 Define resource
 Singleton resource
 Resource collection

 Define the action, use appropriate HTTP method
 GET
 POST
 PUT
 PATCH
 DELETE
 HEAD
 OPTIONS

201

REST – Exchange (2)

 Server side – Request handling & resolution

 Define requested resource (URI)

 Define HTTP method used

 (Optional) Access control & permissions
 Read and check token

 Resolve action

 Generate response
 Define format
 Return resource or resource collection representation with appropriate format
 Return appropriate HTTP response code

202

REST – Exchange (3)

 Client side – Response reading
 Check HTTP response code

 HTTP 2xx response code : success
 HTTP 3xx response code : redirection
 HTTP 4xx / 5xx response code : error

 HTTP 2xx, if request method was
 GET : Parse response to retrieve resource representation
 POST : Resource was successfully created
 PUT / PATCH : Resource was successfully updated
 DELETE : Resource was sucessfully deleted

 HTTP 4xx / 5xx
 An error occured
 May find reasons in the response
 HTTP response code may help

203

REST – Exchange – Conclusion

 Very similar to regular HTTP exchanges

 Request building is basic
 Depends on environment
 Native mobile development using basics libraries
 Web development using Ajax

 Response handling
 XML / JSON / … parser

204

REST – Exchange – Conclusion

 Testing
 Browser development and debugging tools

 Chrome DevTools
 Firefox Firebug

 cURL
 Postman

 Knowledge of HTTP is a must : RFC2616

 HTTP response codes : List

 Basic knowlegde about redirections

205

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://fr.wikipedia.org/wiki/Liste_des_codes_HTTP#Erreur_du_client

REST API
HTTP Response Codes

206

REST – HTTP Response Codes

 200 OK
 Request was successfull
 Content depends on used HTTP method

 201 CREATED
 Request was successfull
 Resource was created

 204 NO CONTENT
 Request was successfull
 No data was returned

207

REST – HTTP Response Codes

 400 BAD REQUEST
 Server wont process request due to an error

 Malformed request
 Error on provided parameters
 …

 401 UNAUTHORIZED
 Server will not allow access to define resource without proper authentication

 403 FORBIDDEN
 Request was valid but the provided authentication do not allow access to this resource

 404 NOT FOUND
 Requested resource is not be found

208

REST – HTTP Response Codes

 405 METHOD NOT ALLOWED
 HTTP method used is not supported

 500 INTERNAL SERVER ERROR
 Generic error message
 Often returned by application or web server
 Should not be intentionally returned, too vague

 301 MOVED PERMANENTLY
 Provide a new URI for requested resource
 Use this to redirect request with trailing slash

 302 FOUND – MOVED TEMPORARILY
 Provide a new URI for requested resource

209

REST API – HATEOAS & HAL
Hypermedia As The Engine Of Application State

210

REST – HATEOAS – Concept

 Hypermedia As The Engine Of Application State
 REST Constraint
 Client does not have to know the deployed application
 Increase Client – Server segmentation

211

REST – HATEOAS – Concept

 Classic response from a REST API

212

REST – HATEOAS – Concept

 Response from a REST API implementing the HATEOAS Constraint

213

REST – HATEOAS – HAL

 HAL : Hypertext Application Language

 One of many HATEOAS implementation

 Principles
 Simple format to link resources
 Make the API browsable
 More difficult to set up at first

 Many libraries to produce and consume HAL

 Define conventions to describe resources as JSON or XML

214

REST – HATEOAS – HAL

 Objectives
 Spend less time on format design
 Focus on implementation and documentation
 Build « explorable » APIs
 Associations enable resources identification and possible interractions
 Base entry point allow developer to discover links

 Can be considered as an API descriptor

 API exploration makes documentation « almost useless »

215

REST – HATEOAS – HAL

 Based on two types of representations

 Resources
 Contain links
 Define other subresources
 Define a state

Link
 Define a target (URI)
 Linked to a relation (rel)
 Contains optional properties to manage version and format handling

216

REST – HATEOAS – HAL

217

REST – HATEOAS – HAL – Example

 Resource links (1)

 Resource properties (2)

 Subresources and their links (3)

218

REST – HATEOAS – CURIEs

 Compact URIs

 Shortcut for links

 May have many different

 Use of a placeholder ({rel})
 Calling find method on http://example.com/docs/rels/orders{?id}

219

http://example.com/docs/rels/orders{?id}

REST – HATEOAS – HAL – Content Type

 Classic REST

 Specific to implementation

220

REST API – Detailed Example
Basic REST API implementation & Testing

221

class Book {

String title

String author

Date dateCreated

static belongsTo = [library: Library]

}

REST – Implementation example

 Basic model with two entities

222

class Library {

String name

String address

static hasMany = [books: Book]

}

REST – Implementation example

 Initialisation data

223

class BootStrap {

def init = { servletContext ->

new Library(name: "Library name", address: "Library address")

.addToBooks(new Book(title: "Library's first book", author: "Unknown"))

.addToBooks(new Book(title: "Library's second book", author: "Unknown"))

.addToBooks(new Book(title: "Library's last book", author: "Unknown"))

.save(flush:true, failOnError: true)

}

}

REST – Implementation example – Resources

 Resource available

 Library
 Library resource representation

http://my.server.com/library/{id}
 Library collection representation

http://my.server.com/libraries

 Book
 Book resource representation

http://my.server.com/book/{id}
 Book collection representation

http://my.server.com/books

224

http://my.server.com/library/{id}
http://my.server.com/libraries
http://my.server.com/library/{id}
http://my.server.com/books

REST – Implementation – Available actions

225

URI Description Réponses

GET http://server/library/
GET http://server/libraries/

Retrieve library list 200 OK + Resource collection representation
404 / …

POST
http://server/library/
http://server/libraries/

Create library 201 OK
404 / …

GET
http://server/library/id

Retrieve library from id 200 OK + Resource representation
404 / …

PUT
http://server/library/id

Update library 200 OK
404 / …

DELETE
http://server/library/id

Delete library 200 OK
404 / …

http://server/library/
http://server/libraries/
http://server/library/
http://server/libraries/
http://server/library/id
http://server/library/id
http://server/library/id

REST – Implementation – Available actions

226

URI Description Réponses

GET http://server/library/
GET http://server/libraries/

Retrieve library list 200 OK + Resource collection representation
404 / …

 Two ways to access resource collection (GET / POST)

 http://server/library
 Considered by many as wrong or not enough precise

 http://server/libraries
 Considered as the best option

 Some may use both with proper redirection

http://server/library/
http://server/libraries/
http://server/library
http://server/libraries

URI Description Réponses

POST
http://server/library/
http://server/libraries/

Create library 201 OK
404 / …

PUT
http://server/library/id

Update library 200 OK
404 / …

REST – Implementation – Available actions

227

 Important to differentiate resource from resource collection

 GET and POST requests will target resource collection

 GET / PUT / PATCH / DELETE requests will target a simple resource
 Identified by ID

http://server/library/
http://server/libraries/
http://server/library/id

REST – Implementation – Available Actions

228

GET http://server/libraries/

GET http://server/library/1

http://server/libraries/
http://server/library/1

REST – Implementation – Testing

 Client Url Request Library
 Build and execute HTTP requests
 Retrieve server response

 Options importantes
 -X HTTP method
 -I Prints out response header
 -H Define request header
 -d Define request data

 -v Verbose

229

REST – Implementation – Grails

 Steps for the simplest handmade REST API

 Create a controller to handle client requests « ApiController »

 Define methods to handle the differents entry points

230

class Book {

String title

String author

Date dateCreated

static belongsTo = [library: Library]

}

class Library {

String name

String address

static hasMany = [books: Book]

}

// ApiController.groovy

class ApiController {

/**

* Will handle GET / PUT / PATCH / DELETE requests

*/

def book() {render "ok"}

/**

* Will handle GET / POST requests

*/

def books() {}

def libraries() {}

def library() {}

}

REST – Implementation – Grails

231

render "ok"

REST – Implementation – Grails

 Test it with a cURL request

232

$ curl http://localhost:8080/api/book -I
HTTP/1.1 200
Content-Type: text/html;charset=utf-8
Transfer-Encoding: chunked
Date: Wed, 02 Oct 2019 17:33:29 GMT

REST – Implementation

 Basic implementation
 Handle basic errors
 Handle request methods
 Handle basic formats

 In any case
 Return explicit HTTP code

233

def book() {

switch(request.getMethod())

{

case "GET":

if (!params.id)

return response.status = 400

def bookInstance = Book.get(params.id)

if (!bookInstance)

return response.status = 404

response.withFormat {

xml { render bookInstance as XML}

json { render bookInstance as JSON }

}

break

case "PUT":

break

case "PATCH":

break

case "DELETE":

break

default:

return response.status = 405

break

}

return response.status = 406

}

REST – Implementation – Grails

 Test it with a cURL request

 Data content

234

$ curl http://localhost:8080/api/book/1 -H "Accept: application/json" -X GET -i
HTTP/1.1 200
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Wed, 02 Oct 2019 17:47:49 GMT

REST – Implementation – Grails

 Testing errors as well : unhandled content type

 Other case : unhandled HTTP method

235

$ curl http://localhost:8080/api/book/1 -H "Accept: text/csv" -X GET -i
HTTP/1.1 406
Content-Length: 0
Date: Wed, 02 Oct 2019 17:47:49 GMT

$ curl http://localhost:8080/api/book/1 -H "Accept: text/json“ -X POST -i
HTTP/1.1 405
Content-Length: 0
Date: Wed, 02 Oct 2019 17:47:49 GMT

REST – Implementation – Grails

 Handle format
 With methods

 With simple logic

236

response.withFormat {

xml { render bookInstance as XML}

json { render bookInstance as JSON }

}

switch(request.getHeader("Accept"))

{

case 'json':

case 'text/json':

case 'application/json':

render bookInstance as JSON

break

case 'xml':

case 'text/xml':

case 'application/xml':

render bookInstance as XML

break

}

REST – Implementation – Grails

 API generation with Annotations

 Full REST API

 All formats handled

237

@Resource(uri = 'books', formats=['json', 'xml'])

class Book {

String title

String author

Date dateCreated

static belongsTo = [library: Library]

static constraints = {

}

}

REST – Implementation – Grails

 Can map REST resources from URLMappings

238

class UrlMappings {

static mappings = {

"/books"(resources: "book", excludes:['update','create'])

"/books"(resources: "book", includes:['index','show','delete'])

"/books"(resources: "book")

{

"/authors"(resources: "author")

}

}

}

REST API – Security
Protection mecanisms

239

REST – Security

 One of main issues with REST APIs

 Many solutions
 Authentication
 Token
 Signature
 Single usage signed requests
 HTTPS

240

REST – Security – Hash

 Fingerprint of a file / string / …

 Fixed size

 Originally for integrity checks

 Weaknesses : Hash reversal
 Dictionnaries – Brute force

 Matching list of strings and hashes
 500 most used passwords = 75% of users
 Few seconds if less than 6 characters (including letters, numbers and special characters)

 Rainbow tables
 Same principle but precomputed
 Trading processing for storage
 Weak against salted hash (cannot precompute all possible passwords with all possible salt)

241

REST – Security – Authentication

 Responds to the need to identify the sender of the request

 Classic authentication
 Send login + password (hash) in the request
 Always use a "salt" improve safety

 Problems
 Can brute force easily
 Credentials sent
 If the request is intercepted we can have fun on the API with the retrieved identifiers

242

REST – Security – Token

 Simple implementation to limit exchanges containing credentials
 The credentials are sent to retrieve a token with a limited lifetime
 We then use the "Token" to play the role of credentials
 The token have no obvious link with the credentials
 We limit the risks

 Problem
 If the "Token" is intercepted, we can always use the API until the token timeout

243

REST – Security – Signature

 Aims at guaranteeing the identity of the sender as well as the integrity of the
request
 Using HMAC type algorithms
 Calculated via a "Hash" in combination with a secret key
 Sender

 Encrypt the document and the hash of the document with his private key

 Receiver
 Identify the sender by decrypting the whole thing to get the hash (can be created only by the private key

wearer)
 Verify document integrity rebuilding the hash of the document and comparing

 In case of interception, you can not recreate a valid signature for a new request

 Problem
 If the request is intercepted, it can be replayed

244

REST – Security – Signature

245

REST – Security – Signature

246

REST – Security – Single use signed requests

 Used by the majority of serious REST API providers

 Additional storage of the "Timestamp" of the last request by the Client and the
Server

 Use this timestamp for the creation of the signature

 Overcomes the last remaining problem: even if the request is intercepted, it can
not be replayed

247

REST – Security – HTTPS

 Channel security

 Assurance for the server that the request received is identical to the one sent

 Assurance that the sender is the person claiming to have sent the request

 End-to-end encryption

 Man in the middle useless

 Combined with other methods for added security

248

REST – Security – HTTPS

 Channel security

 Assurance for the server that the request received is identical to the one sent

 Assurance that the sender is the person claiming to have sent the request

 End-to-end encryption

 Man in the middle useless

 Combined with other methods for added security

249

