
1

www.mbds-fr.org

MBDS course:
« Native Mobile Programming »

Part 1
Grails Framework and REST API

Gregory Galli

Freelance Teacher and Projet Manager at University of Nice
Sophia Antipolis (UCA) - France

2

Module 1:
Back-end development
Groovy – Grails – Project summary

3

Groovy Language
Overview

4

Context

 Groovy, an alternative to Java

 Grails Framework
 Philosophy
 Advantages
 Architecture

5

Groovy

 Created in 2003

 Object oriented language for the Java platform

 Inspirations

 Superset of Java
 Inherit Java strong points
 Enhance Java
 Can use Java libraries

6

Groovy

 Syntax

 Functionalities
 Closures
 Easy XML / JSON manipulation
 Flexible and complete collection system
 Dynamic typing (def)
 Native support for regular expression
 Native support for markup languages
 String interpolation
 Safe navigation operator (?.)
 Can be executed as a script
 And so on …

7

Groovy – Dynamic typing

 Can use static or dynamic typing
 “def” keyword

 Type checking at runtime

 Pros
 More flexibility
 Quicker coding
 A variable can have his type changed

 Cons
 Need to be more rigorous
 Can lead to unexpected behaviours

8

Groovy – Assertion

 Use of “assert”(assertions) to check some conditions are met

9

// Define a variable

def subject = "Mooc"

// Confirm the variable value

assert subject == "Mooc"

// Produce traces on error

assert subject == "Mook"

// Prints out

"""

Caught: Assertion failed:

assert subject == "Mook"

| |

'Mooc' false

"""

Groovy – Closures

 Anonymous

 Can take arguments

 Return a value

 Can be assigned to a variable

 Can be stored into a variable

 Out of the surrounding scope

 Declaration

 Optional parameters
 Comma separated

 Offers flexibility for simple things

10

{ [closureParams ->] statements }

Groovy – Closures – Declaration

 Often used with implicit parameter “it”

11

// Prints out provided parameter, classic declaration

def closureA = { def var -> println var }

// Equivalents

def closureB = { println it } // implicit parameter

def closureC = { it -> println it } // named parameter, no type defined

def closureD = { def it -> println it } // named parameter, dynamic typed variable

def closureE = { String it -> println it } // named parameter, typed variable

Groovy – Closures – Call

 Different ways to call a Closure

12

// No param closure

def closure = { "mooc" }

// Can be called like this

assert closure() == "mooc"

assert closure.call() == "mooc"

// Closure with param

def closureWithParam = { it }

// Can be called this way

assert closureWithParam("closure") == "closure"

assert closureWithParam.call("closure") == "closure"

Groovy – Closures – Examples

13

// Return true if the provided parameter is odd

def isOdd = { int i -> i % 2 != 0 }

assert isOdd(3) == true

assert isOdd(2) == false

// Return true if the provided parameter is even

def isEven = { int i -> i % 2 == 0 }

assert isEven(3) == false

assert isEven(2) == true

// Return the surface considering the parameters

def rectSurface = { int w, h -> w * h}

assert rectSurface(2, 3) == 6

Groovy – Collections

 Various collection types
 Lists
 Sets
 Maps
 Ranges

 A lot of available methods

 Simple syntax
 Declaration
 Usage

14

Groovy – Collections – List

 Ordered
 0-based index

 Can hold duplicates

 Can hold various types

 Declaration & manipulation

15

Groovy – Collections – List

16

// Empty List

List emptyList = []

// Intergers List

List integerList = [1, 2, 3, 4]

// Mixed List

List mixedList = ['Mooc', 101, [1, 2], 1.01]

 List Declaration

Groovy – Collections – List

17

 Manipulation

// Declare new List

List list = ['Paris', 'London', 'Berlin']

// Checking List data

assert list.size() == 3

assert list.isEmpty() == false

assert list.contains('Berlin') == true

Groovy – Collections – List

18

 Manipulation

// Declare new List

List list = ['Paris', 'London', 'Berlin']

// Editing current List

list.add('Rome')

assert list == ['Paris', 'London', 'Berlin', 'Rome']

assert list.pop() == 'Paris' // would be the last item < groovy 2.5

assert list == ['London', 'Berlin', 'Rome']

// This method is creating a new List

assert list.reverse() == ['Berlin', 'London', 'Paris']

Groovy – Collections – Set

 Not ordered

 Can not hold duplicates

 Can hold various types

 Declaration & manipulation

19

Groovy – Collections – Set

20

 Declaration

// Empty Set

Set emptySet = []

// Set from List

def list = ['Paris', 'London', 'Berlin']

def listToSet = list.toSet()

def listAsSet = list as Set

Groovy – Collections – Map

 Associative Array

 Keys are strings by default

 Not ordered

 Very handy to handle structured data

21

Groovy – Collections – Map

22

 Declaration

// Empty Map

def emptyMap = [:]

// Classic Map

Map map = [france: 'Paris', uk: 'London', germany: 'Berlin', italy: 'Rome']

Groovy – Collections – Range

 Quick way to declare list of sequential values

 Inclusive by default

23

// Classic Range

def inclusiveRange = 11..15

assert inclusiveRange == [11, 12, 13, 14, 15]

// Exclusive notation

def exclusiveRange = 11..<15

assert exclusiveRange == [11, 12, 13, 14]

Groovy – Collections – Generics

 Handy Methods for Collections / Iterables

 plus : Combine collections

 minus : Subtract collections

 each / eachWithIndex : Iterate over Collection item

 collect : Iterate over elements to transform them

 find / findAll / findIndexOf : Filter & search

 flatten : Self explanatory

 split : Divide a collection

24

Groovy – Collections – Plus / Minus

 Combine / Subtract collections

 Create a new collection

25

// Declare new List

List list = ['Paris', 'London', 'Berlin']

// These are creating new Lists

assert list.minus('Paris') == ['London', 'Berlin']

assert list.plus('Rome') == ['Paris', 'London', 'Berlin', 'Rome']

assert list.size() == 3

Groovy – Collections – Each

 Iterate over collection items

26

List list = ['Paris', 'London', 'Berlin']

// Iterate and print value

list.each {

println it

}

// Prints out

London

Berlin

Rome

Groovy – Collections – Each

 Works with all collection type

27

// Declare new Map

Map map = [france: 'Paris', uk: 'London', germany: 'Berlin', italy: 'Rome']

// Iterate and print

map.each {

println "The capital of $it.key is $it.value"

}

// Strict equivalent

map.each { key, value ->

println "The capital of $key is $value"

}

// Prints out

The capital of france is Paris

The capital of uk is London

The capital of germany is Berlin

The capital of italy is Rome

Groovy – Collections – EachWithIndex

 With index if you need to keep track

28

// With index

map.eachWithIndex { key, value, index ->

println "[$index] The capital of $key is $value"

}

// Prints out

"""

[0] The capital of france is Paris

[1] The capital of uk is London

[2] The capital of germany is Berlin

[3] The capital of italy is Rome

"""

Groovy – Collections – Collect

 Iterate over items and transform them

29

// Collect to edit

def newList = map.collect {

key, value ->

[key.toUpperCase(), value]

}

assert newList == [

['FRANCE', 'Paris'],

['UK', 'London'],

['GERMANY', 'Berlin'],

['ITALY', 'Rome']]

Groovy – Collections – Collect

 Can add the collection you want to build as a parameter

30

def newOtherList = []

map.collect(newOtherList) {

key, value ->

[key.toUpperCase(), value]

}

assert newOtherList == [

['FRANCE', 'Paris'],

['UK', 'London'],

['GERMANY', 'Berlin'],

['ITALY', 'Rome']]

Groovy – Collections – Find

31

// Declare new list

def intList = [1, 2, 3, 4, 5, 6, 11, 15]

// Returns the first matching element

assert intList.find{ it > 5 } == 6

// Returns all matching elements

assert intList.findAll{ it > 5 } == [6, 11, 15]

// FindAll will always return a list even if no matching element

assert intList.findAll{ it > 20 } == []

Groovy – Collections – Other

32

// Declare new list

def multiDimList = [1, [2, 3], 4, [5, 6, [7, 8], 9]]

// Flatten any depth collection

def flatList = multiDimList.flatten()

assert flatList == [1, 2, 3, 4, 5, 6, 7, 8, 9]

// Split returns a list with two batches

// First batch contains the matching elements

// Second batch contains the rejected values

assert flatList.split { it < 6} == [[1, 2, 3, 4, 5], [6, 7, 8, 9]]

Groovy – Syntax

May be surprising, Can omit :
 Brackets before methods call
 Dots between successive calls

33

// Declare methods

def turn(def direction) {

println direction

return this

}

def then(def direction) {

println direction

}

// Declare variables

def left = "west"

def right = "east"

// Equivalent to turn(left).then(right)

turn left then right

// Prints out

"""

west

east

"""

Groovy on Rails : Grails
Overview

34

Grails – Context

 Created in 2005 (Graeme Rocher)

 Open source agile full stack development framework

 Based on the Groovy language (Grails Groovy on Rails (agile))

 Built on top of Spring Boot

 Seamless integration with Java

 Built for the JVM

35

Grails – Concepts & Advantages

 DRY : Don’t repeat yourself

 Convention over configuration

 Model driven architecture

 Easy prototyping (scaffolding)

 Plugins
 Spring security core

36

Grails – Concepts & Advantages

 Vast and helping community

 View technologies – Mainly for HTML / JSON rendering

 Asynchronous capabilities – Promises / Events – RxJava

 Domain-specific languages (DSLs)
 Validation
 Querying
 Rendering

37

Grails – Concepts & Advantages

 GORM
 Hibernate (SQL)
 MongoDB
 Cassandra

 Embedded Application Server
 Tomcat (Plugin)

 In-memory database for development stage (H2)

 Many IDE available
 Intellij IDEA – Ultimate edition (best in my opinion, free student licence)
 Eclipse
 Sublime

38

Grails – Architecture

39

Grails – Used by

40

Grails – Plugins

 Default
 Application Server : Tomcat / Glassfish
 Database : H2 / Hibernate
 Web resources handling : Assets

 Useful
 Security : Spring Security Core / REST
 Payment Service Provider : Paypal / Stripe / …
 Mail handling
 Cron Job handling

 Check before using

 Restrict usage to prevent performance issues

41

Grails
Modelling, Hibernate, GORM & Querying

42

Grails – Modelling

 Main focus when building a Grails application
 Base attributes
 Constraints
 Relations

 Scalability

 Mappings

 Using GORM DSL

43

Grails – Modelling

 Attributes defined with any base type

 Complete list : Hibernate documentation BasicTypes

44

class BaseTypes {

byte[] grails_byte_array

String grails_string

byte grails_byte

Character grails_character

Integer grails_integer

Double grails_double

Float grails_float

Long grails_long

Date grails_date

Boolean grails_Boolean

}

https://docs.jboss.org/hibernate/orm/current/userguide/html_single/Hibernate_User_Guide.html#basic-provided

Grails – Modelling

 Attributes defined with any base type

45

Grails – Modelling

 Relations
 One-to-One
 One-to-Many
 Many-to-Many

46

class User {

String username

// One-to-One

Address address

// One-to-Many (Message) and Many-to-Many (Group)

static belongsTo = [UserGroup]

static hasMany = [messages: Message, groups: UserGroup]

}

Grails – Modelling

 Unidirectional / Bidirectional

 Strong impact on performance

 Bidirectional when needed only

 Properties added by GORM

 id : Long – Primary key – Auto increment

 version : Long – Used to maintain data consistency

47

Grails – Hibernate

 Open source persistence Framework

 Usable in web or classic application environment

 Replace a classic DAL (Data Access Layer)

 Provide high level object method access

 Usable with most relational DBMS

 Used in Grails environment through GORM

48

Grails – GORM

 Grails Object Relational Mapping

 Data Access Framework
 Quick data access code

 GORM for …
 Hibernate (SQL)
 MongoDB (Document oriented)
 Cassandra (NoSQL)
 …

 Illusion of an object oriented database

 Matching the object with a relational database

49

Grails – Hibernate / GORM – Pros

 Accessing high level object instead of tables

 Easy and quick setup and usage
 No need to setup tables or tables properties
 Dynamic finders for prototyping or simple request

 Transaction handling

 Same syntax whatever the DBMS
 Seamless & painless transition if DBMS migration

50

Grails – Hibernate / GORM – Cons

 Can be tough in complex projects

 Adding a new layer hinders performances

 Abstraction
 Does not mean you should not understand what’s behind
 Without a global understanding, will encounter blocking points

51

Grails – GORM – Querying

 Basic CRUD

 Dynamic Finders

 Where Queries

 Criteria Queries

 Hibernate Query Language (HQL)

52

Request
complexity

Performances

Conclusion

 Covered the basics
 Groovy
 Grails

 Next steps, go deeper into Grails
 Project structure
 Modelling
 Data handling
 Security

 Dive into back office development

53

Module 2:
Back-end development
Project Structure – Querying – Specifics – Scaffolding – Security

54

Grails – Project Structure
Assets, Configuration, Plugins & Tools

55

Grails – Project Structure

 Convention over configuration
 File names and location is key

 grails-app : top level directory containing groovy sources
 assets : front-end ressources, managed by Asset Pipeline Plugin
 conf : configurations sources
 controllers : web controllers
 domain : domain classes
 i18n : internationalization files
 init : contains BootStrap.groovy file (init data)
 services : service layer
 taglib : tag libraries
 utils : Grails utilities
 views : contains Groovy Server Pages and JSON Views

 src / …

56

Grails – Project Structure

 Convention over configuration
 File names and location is key

 grails-app : top level directory containing groovy sources
 […]

 src / integration-test : self explanatory

 src / main : groovy sources

 src / test : unit tests

57

Grails – Asset Pipeline Plugin

 Managing and processing static assets

 Available since Grails 2.4

 Process and minify CSS and Javascript files

 Built-in taglibs for proper ressources usage

 Can be extended to compile custom statics
 Coffeescript
 LESS
 SASS
 …

58

Grails – Asset Pipeline Plugin

 Default manifest files with directives

 Default structure
 grails-app/assets/javascript
 grails-app/assets/images
 grails-app/assets/stylesheets

59

Grails – Asset Pipeline Plugin – Serving Assets

 Served by application server during development & tests

 Should be externalized for production
 Dedicated external web server
 CDN

60

grails-app/conf/application.yml

environments:

for specific environment

production:

grails:

specify

assets:

the base url

url: http://cdn.example.com/

the base path

storagePath: /var/www/dedicated/web/server

Grails – Asset Pipeline Plugin – Taglibs

 Use Taglibs to create proper references

61

<head>

%{-- Javascript / CSS inclusion in pages --}%

<asset:javascript src="application.js"/>

<asset:stylesheet src="application.css"/>

</head>

<body>

%{-- Simple reference to asset --}%

<asset:image src="logo.png"/>

</body>

Grails – Configuration

 Not mandatory

 Mainly useful for overrides

 Build configuration build.gradle

 Runtime configuration grails-app/conf/application.yml

 Can be externalized

62

file : grails-app/conf/application.yml

server:

Change the application server port this way

port: 8082

Change the context path like this

contextPath: /myProjectName

Grails – Data Sources

 Provide configuration for database link
 Default settings are completely fine to start with

 Environment specific

 Default database : H2

 Swap database
 Provide new driver (dependency / manual JAR)
 Change the driverClassName
 Change the username & password if needed
 Edit the JDBC url
 Restart project
 Done !

63

Grails – URL Mappings

 Defined in grails-app/controllers/package/UrlMappings.groovy

Mapping URL
 Controllers
 Actions
 REST Resources

 No real convention
 defined and editable

64

class UrlMappings {

static mappings = {

"/$controller/$action?/$id?(.$format)?"{

constraints {

// apply constraints here

}

}

"/"(view:"/index")

"500"(view:'/error')

"404"(view:'/notFound')

}

}

Grails – URL Mappings

 View redirection, static views

 Redirect on controller / action

 Redirect on REST Resources

65

"/"(view:"/index")

"500"(view:'/error')

"404"(view:'/notFound‘)

// default action : index

"/"(controller: "main")

// equivalent to

"/"(controller: "main", action: "index")

"/users"(resources: "user")

Grails – URL Mappings

 Can use
 Embedded variables
 Optional variables
 Regular expressions

66

// matching url will be map declared variables

// will match : /promo/product/107

"/$category/product/$id"(controller: "product")

// use ? to make variables optionals

// will match : /promo/product/107

// will also match : /promo/product

"/$category/product/$id?"(controller: "product")

Grails – URL Mappings

 Can use
 Embedded variables
 Optional variables
 Regular expressions

67

// use regular expressions to constraint variables values

// will match : /promo/product/107

// wont match : /promo/product/abc

"/$category/product/$id"

{

controller = "product"

constraints{

id(matches: /\d+/)

}

}

Grails – Bootstrap

 Located under « init » directory

 Contains 2 closures
 “init” closure called at server start
 “destroy” closure called when

 The servlet instance has been taken out
 A timeout period has passed

 Mainly used to setup project essential data
 Define main Users (admin), Roles (security)

 Useful in development phase
 Wipe database data on restart
 Reset base data with Bootstrap at launch
 Always save with options

 Flush : to trigger the persistence operations immediately
 FailOnError : to stop the application server start if something goes wrong

68

Grails – Plugins

 Defined in build.gradle

 Huge plugin base

 Use sparingly

 Default plugins
 Hibernate
 Assets
 Tomcat
 …

 Useful
 Spring Security Core
 Spring Security REST
 Connectors
 …

69

Grails – Modelling
Focus on Modelling, Inheritance, Associations, Constraints & Mapping

70

Grails – Modelling – Inheritance

 Avoid as much as possible
 Performance issues

 Default behaviour
 Gather all properties in the same table
 Can’t force properties to be “not null” at database level

71

class User {

String username

}

class Client extends User {

String clientRef

}

class Prospect extends User {

String prospectRef

}

Grails – Modelling – Inheritance

72

new User(username:"user", address: new Address()).save()

new Client(username:"client", clientRef: "clientRef", address: new Address()).save()

new Prospect(username:"prospect", prospectRef: "prospectRef", address: new Address()).save()

Grails – Modelling – Inheritance

 Non matching properties set to null

 Class field added to keep track

 Default behavior : table-per-hierarchy

 Override : table-per-subclass with mapping DSL

73

Grails – Modelling – Inheritance

74

class User {

String username

static mapping = {

tablePerHierarchy false

}

}

class Client extends User {

String clientRef

}

class Prospect extends User {

String prospectRef

}

Grails – Modelling – Inheritance

 No useless fields
 Saves disk space

 Each request requires table joins
 Computing cost is higher
 Disk access cost is higher

 No systematic better choice decide according to the situation

75

Grails – Modelling – Inheritance

 Seamless when getting objects

76

// Retrieve all Users an render as JSON

render User.list() as JSON

Grails – Modelling – Associations

 Define how domain class interact

 Unidirectional by default

 Available setups
 Many-to-one
 One-to-One
 One-to-Many
 Many-to-Many

 Complex cases
 Multiple properties of the same type
 Self referential properties
 Deal with GORM incorrect guesses

77

Grails – Associations – Many-to-One

 Simplest case

 Unidirectional

 Multiple Books may reference a same Author

 Book references a single Author instance

78

// Book.groovy

class Book {

String title

Author author

}

// Author.groovy

class Author {

String name

}

Grails – Associations – Many-to-One

 Persist new object with Many-to-one association

79

// Persist a new Book with a new Author

new Book(title: "title", author: new Author(name: "author's name")).save()

// Persist a new Book with an existing Author

new Book(title: "title", author: Author.get(1)).save()

// Persist a new Author, assign it to new Books

def authorInstance = new Author(name: "new author").save()

new Book(title: "title", author: authorInstance).save()

new Book(title: "other title", author: authorInstance).save()

Grails – Associations – One-to-One

 « Kind of » One-to-one

 Address belongs to User
 Behave like a One-to-one

 « Belongs to » implies
 Strong dependency from Address to User
 User cascade saves and deletes
 Address can’t exist on its own

80

// User.groovy

class User {

String username

Address address

}

// Address.groovy

class Address {

static belongsTo = [user: User]

}

Grails – Associations – One-to-One

81

// User.groovy

class User {

String username

Address address

}

// Address.groovy

class Address {

static belongsTo = [user: User]

}
// Save user AND address instance

def userInstance = new User(username: "username")

userInstance.address = new Address()

userInstance.save()

// Delete user AND associated address

userInstance.delete()

Grails – Associations – One-to-One

 Proper One-to-one

 Foreign key in the weak side of the
association (Address)

 hasOne always bidirectional

 Without « belongsTo »
 Cascade save

 With « belongsTo »
 Cascade delete

82

// User.groovy

class User {

String username

static hasOne = [address: Address]

}

// Address.groovy

class Address {

// Simple reference

// won’t cascade deletes

User user

}

Grails – Associations – One-to-One

 Persist new object with One-to-one association

83

// Persist a new User with a new Address

// No need to explicitly define Address > User attribute

new User(username: "username", address: new Address()).save()

// User won't be created, Address is mandatory

new User(username: "username").save()

// Address holds reference to User, cannot create Address on its own

// Address won't be created

new Address().save()

Grails – Associations – One-to-Many

 User has many instances of
Message

 Will create a join table

 Default names for table and columns
customizable with mappedBy

 Default cascading behaviour
 Cascade saves and updates
 Casdade deletes if Message belongs to User

 User’s property : « messages » will be a « Set »
 Can be overridden

84

// User.groovy

class User {

String username

static hasMany = [messages: Message]

}

// Message.groovy

class Message {

String content

}

Grails – Associations – One-to-Many

85

// Instantiate new User

def userInstance = new User(username: "username")

// Add new Message to userInstance

userInstance.addToMessages(new Message(content: "message content"))

// Adding multiple Messages

["message","other message", "another message", "..."].each {

userInstance.addToMessages(new Message(content: it))

}

// Persist userInstance will save User and associated Message

userInstance.save()

// Will delete userInstance without deleting Message (no belongsTo)

userInstance.delete()

Grails – Associations – One-to-Many

 Fetching strategy
 Default : Lazy
 Can be overridden

 Eager fetching
 Need to be very carefull
 Can introduce cyclic queries
 Only when needed

 Collection won’t be full loaded on first access

86

// User.groovy

class User {

String username

static hasMany = [messages: Message]

}

// Message.groovy

class Message {

String content

}

Grails – Associations – One-to-Many

 Fetching a user will fetch
messages references

 When iterating over the
message Set GORM will
fetch the message

 « messages » is a Set
 Unsorted
 Can be overridden using a List instead of a Set

87

// Fetch a User from ID (1)

def userInstance = User.get(1)

// Only messages references at this step

// Iterate over the User messages

// will trigger the fetching of the messages

userInstance.messages.each{

// Print the message content in the console

println it.content

}

Grails – Associations – One-to-Many

 Deleting the « Many » side of the association
 Declare the « Many » side « belongsTo » the « One » side
 Declare an explicit cascading behaviour

88

// Instantiate new User

def userInstance = new User(username: "username")

// Adding multiple Messages

["message","other message", "another message", "..."].each {

userInstance.addToMessages(new Message(content: it))

}

// Persist userInstance will save User and associated Message

userInstance.save()

// Will delete userInstance as well as linked messages

userInstance.delete(flush:true)

Grails – Associations – One-to-Many

 Deleting the « Many » side of the association
 Declare the « Many » side « belongsTo » the « One » side (1)
 Declare an explicit cascading behaviour (2)

 Example case 1.

89

class User {

String username

static hasMany = [messages: Message]

}

class Message {

String content

static belongsTo = [user: User]

}

Grails – Associations – One-to-Many

 Deleting the « Many » side of the association
 Declare the « Many » side « belongsTo » the « One » side (1)
 Declare an explicit cascading behaviour (2)

 Example case 2.

90

class Message {

String content

}

class User {

String username

static hasMany = [messages: Message]

static mapping = {

messages cascade: 'all-delete-orphan'

}

}

Grails – Associations – One-to-Many

 « belongsTo » on the « Many » side of the association
 Change the database structure

 Without « belongsTo »
 Association table

91

Grails – Associations – One-to-Many

 « belongsTo » on the « Many » side of the association
 Change the database structure

 With « belongsTo »
 No association table
 « Many » side references the « One » side

92

Grails – Associations – Many-to-Many

 Inconsistent with ORMs

 Defined with « hasMany » on both sides

 Must declare the owned side of the relationship using « belongsTo »

93

// Author.groovy

class Author {

String name

static hasMany = [books: Book]

// Author is the owned side

static belongsTo = Book

}

// Book.groovy

class Book {

String title

static hasMany = [authors: Author]

}

Grails – Associations – Many-to-Many

Handled like a « One-to-Many » at database level

 Owning side takes responsibility for the persisting
 Cannot cascade saves from the owned side

94

Grails – Associations – Many-to-Many

95

// Will save the Book as well as the Authors (Owning side)

new Book(title: "Art and Science of Big Data")

.addToAuthors(new Author(name: "Serge Miranda"))

.addToAuthors(new Author(name: "Robin Girard"))

.addToAuthors(new Author(name: "Benjamin Renaut"))

.save()

// Will only save the Author (Owned side)

new Author(name: "Serge Miranda")

.addToBooks(new Book(title: "Art and Science of Big Data"))

.addToBooks(new Book(title: "Relational databases"))

.save()

Grails – Associations – Sets & Lists

 At code level a « One-to-Many » is a Set
 Not ordered
 Cannot hold duplicates
 Can be costly if collection is really large
 Can be handled manually (Spring Security)

 Can override Set to List
 Ordered
 Keep unicity constraint from Set
 Automatic index handling
 Add a new column to keep the index

96

Grails – Modelling – Constraints

 Declare constraints within domain class
 Database level constraints
 Code level constraints

 Constraints property
 property name
 named parameters

 Default : Properties are « nullable: false »

 Makes development safer

97

Grails – Modelling – Constraints

98

Grails – Modelling – Constraints

99

Grails – Modelling – Constraints

100

class User {

String username

String email

static hasOne = [address:Address]

static hasMany = [messages: Message]

static constraints = {

// username can’t be empty or null and must be between 5 and 15 char

username blank: false, nullable: false, size: 5..15

// email can’t be empty or null, has a valid email format and is unique

email blank: false, nullable: false, email: true, unique: true

// address for a User has to be defined

address nullable: false

}

}

Grails – Modelling – Mapping

 Custom ORM mapping

 Customize
 Tables name
 Join tables name
 Fields name
 Version handling
 Lazy / Eager fetching
 Caching strategy
 Auto timestamping

 dateCreated
 lastUpdated

 And many more …

101

class User {

String username

String email

static hasOne = [address:Address]

static hasMany = [messages: Message]

static mapping = {

// Custom table name

table 'frontend_users'

// Prevent version handling

version false

// Custom column name

username column: 'user_name'

// Eager fetching for messages

messages lazy: false

}

}

Grails – Modelling – Mapping

 Custom ORM mapping

 Customize
 Tables name
 Join tables name
 Fields name
 Version handling
 Lazy / Eager fetching
 Caching strategy
 Auto timestamping

 dateCreated
 lastUpdated

 And many more …

102

class User {

[…]

static hasMany = [messages: Message]

String description

Date dateCreated

Date lastUpdated

static mapping = {

// Disable autotimestamping

autoTimestamp false

// Force field type to 'text'

description type: 'text'

// Custom join table

messages joinTable: [name : 'user_messages',

key : 'user_id',

column: 'message_id']

}

Grails – Modelling – Mapping

 Cascade behaviour
 save-update : cascades only saves and updates
 delete : cascades only delete
 all : cascades saves, updates and deletes
 all-delete-orphan : only with one-to-many, cascades all and delete child when removed

from association, also delete children when parent is deleted
 other cases : http://gorm.grails.org/6.0.x/hibernate/manual/#customCascadeBehaviour

 Defaults
 hasMany cascades save-update
 belongsTo cascades all-delete-orphan

103

class User {

static hasMany = [messages: Message]

static mapping = {

// Define cascade behaviour

messages cascade: 'all-delete-orphan'

}

}

http://gorm.grails.org/6.0.x/hibernate/manual/#customCascadeBehaviour

Grails – Controllers
Structure & scopes

104

Controllers – Basics

 Handle requests

 Return responses

 Convention / default configuration
 Each action maps to a URI (cf. UrlMappings.groovy)
 Default action within controller

 If index action is defined, it’s the default one

105

// default overridable value

static defaultAction = "list"

Controllers – Scopes (Objects)

 Define objects used to store variables

 Accessible from controllers

 Access using the scopes name in controllers

 5 Scopes available
 servletContext
 session
 request
 params
 flash

106

Controllers – Scopes (Objects)

 servletContext
 Instance of ServletContext
 Also know as Application scope
 Available across the entire web application
 One context per web application per Java Virtual Machine

 session

 request

 params

 flash

107

Controllers – Scopes (Objects)

 servletContext

 session
 Instance of HttpSession
 Used to store information associated to a user owning an active session
 Usually handled with cookies

 request

 params

 flash

108

Controllers – Scopes (Objects)

 servletContext

 session

 request
 Used to store information relative to the current request
 Instance of HttpServletRequest
 Contains all the information about the request

 Cookies
 Format
 Locales
 Security definitions
 Request data
 Host information
 …

 params

 flash

109

Controllers – Scopes (Objects)

 servletContext

 session

 request

 params
 Multi dimensional mutable map
 Same scope (range) as request

 Sort of a “map version” of the request scope

 Contains all request parameters
 Usually use this scope to get request GET / POST parameters

 Often used to perform data binding

 flash

110

Controllers – Scopes (Objects)

 servletContext

 session

 request

 params
 Called url

 params scope content

 flash

111

http://myserver.url/test?f_name=first_name&l_name=last_name

Controllers – Scopes (Objects)

 servletContext

 session

 request

 params

 flash
 Temporary scope
 Information available for current AND next request
 Flushed after the next request
 Useful for specific cases like defining data before a redirect

 Often used to display confirmation or informative messages about the previous action

112

Controllers – Scope (range/reach)

 Define the scope (range/reach) of a controller

 Default scope for controller is prototype

 Can be overridden globally (application.yml)

 3 scopes available
 prototype
 session
 singleton

113

Controllers – Scope (range/reach)

 prototype
 A new controller instance is created for each request

 session
 A new controller instance is created for each user session

 singleton
 A unique global instance is created and shared
 Care with this scope : do not set user specific properties as it will be shared with everyone

114

Controllers – Interceptors

 Based on controllers

 Used to trigger some actions
 Before controller / action execution
 After controller / action execution
 After the view rendering

 Can include / exclude controllers / actions based on names
 Can use regular expressions

 Can define order / priority notion

 Can be used for basic security implementation

115

Grails – Controllers – Data handling
Data binding & response handling

116

Data handling

 Data binding
 Transition between the web / form request data type to Groovy / Java objects
 Data validation
 Security

 Responding
 How to render data to the “user”
 Formats
 Using converters
 Marshallers
 Handy methods (respond)
 JSONBuilder

117

Data handling – Binding

 Request to the server
 Forms
 Direct HTTP invocation

 Convert String / Numeric content of the request to the real property type

118

class User {

String username

Integer age

}

// Data is set in a map

def map = [username: "username", age: "50"]

// we then bind data to the model object

def newUserInstance = new User(map)

// and save the newly created User

newUserInstance.save()

Data handling – Binding

 Working with associations
 Single reference

119

class User {

String username

Integer age

static hasOne = [address: Address]

}

// Data is set in a map

def map = [username: "username", age: "50", address: [address: "3 Groovy Place"]]

class Address {

String address

User user

}

Data handling – Binding

 Working with associations
 One-to-Many

120

class User {

String username

Integer age

static hasOne = [address: Address]

static hasMany = [messages: Message]

}

// Data is set in a map

def map = [username: "username", age: "50", address: [address: "3 Groovy Place"],

"messages[0]": [content: "Message content"],

"messages[1]": [content: "Other message content"]]

class Message {

String content

static belongsTo = [user: User]

}

Data handling – Binding

 Can be used to update data
 Slightly different syntax

121

// Load user

def userInstance = User.get(1)

// Data is set in a map

def map = [username: "username", age: "50", address: [address: "3 Groovy Place"],

"messages[0]": [content: "Message content"],

"messages[1]": [content: "Other message content"]]

// we then bind data to the model object this way

userInstance.properties = map

// and save the updated user

userInstance.save(flush: true)

Data handling – Binding

 Many other possibilities and cases

 Documentation, pretty rich on this subject

 Can get around binding data manually
 Retrieve data from the request
 Control format
 Update properties accordingly

122

Data handling – Response

 Model and views

 Respond method

 WithFormat method

 Builders

 Marshallers

123

Data handling – Response - Model and views

 Model for controllers is a Map handed to the view

 Different ways to hand this model to the view

 Selecting the view
 Handling with convention
 Specific rendering

124

Data handling – Response - Model and views

 Declare and return a Map instance

 Convention for view selection

125

def show()

{

// Render the user instance in the "user" variable

[user: User.get(params.id)]

}

/views/controllerName/actionName.gsp

Data handling – Response - Model and views

 Example : Calling - http://myserver.url/user/show?id=1

 Will render
 Data : User instance in a “user” variable
 View : Will target the view defined under

126

// UserController.groovy

def show()

{

// Render the user instance in the "user" variable

[user: User.get(params.id)]

}

/views/user/show.gsp

http://myserver.url/user/show?id=1

Data handling – Response - Model and views

 Other methods
 return ModelAndView
 render method

127

// Render the user instance in the "user" variable

[user: User.get(params.id)]

// Strictly equivalent

return new ModelAndView("/user/show", [user: User.get(params.id)])

// Also equivalent

render(view: "/user/show", model: [user: User.get(params.id)])

Data handling – Response - Respond

 Preferred way to return data

 Autonomously handle content negotiation analysing
 HTTP Header “Accept”
 Request parameter
 URI extension

 Find the best suited matching mime type

 Tries to render the response with the corresponding type

128

Content negotiation

 Default mime types

 Defined in application.yml

129

types:

all: '*/*'

atom: application/atom+xml

css: text/css

csv: text/csv

form: application/x-www-form-urlencoded

html:

- text/html

- application/xhtml+xml

js: text/javascript

json:

- application/json

- text/json

multipartForm: multipart/form-data

pdf: application/pdf

rss: application/rss+xml

text: text/plain

hal:

- application/hal+json

- application/hal+xml

xml:

- text/xml

- application/xml

Data handling – Response - Respond

 Example

130

class User {

String username

Integer age

static hasOne = [address: Address]

static hasMany = [messages: Message]

}

// UserController.groovy

def list()

{

// Will try to handle content negotation

// Then return the data the most appropriate way

respond User.list()

}

Data handling – Response - Respond

 Calling - http://myserver.url/user/list

 From web browser
 Will try to return corresponding web page (HTTP Error 500 if page does not exist)

 Forging HTTP request (with cURL for example) without any hint about type gives
the same result
curl http://myserver.url/user/list -I

 Will return HTTP/1.1 500 if pages does not exist
 Will return de page html content if it exist

 Reminder about conventions

131

http://myserver.url/user/list
http://myserver.url/user/list

Data handling – Response - Respond

 Same scenario with “Accept” header set
curl http://myserver.url/user/list -H "Accept: application/json“

 Will return HTTP/1.1 200, meaning “OK” with data

132

[

{

"id":1,

"address":{"id":1},

"age":25,

"username":"username-5",

"messages":[{"id":1}]

}

]

http://myserver.url/user/list

Data handling – Response - Respond

 Can alternatively set the format using URI extension
curl http://myserver.url/user/list.JSON

 Will return HTTP/1.1 200, meaning “OK” with data

133

[

{

"id":1,

"address":{"id":1},

"age":25,

"username":"username-5",

"messages":[{"id":1}]

}

]

http://myserver.url/user/list.JSON

Data handling – Response - WithFormat

 Objective is the same

 Do not handle any autonomous content negotiation analysis

 Way to provide specific rendering for each content type

 Useful when each content type should not render the same data

 Wildcard to handle « all the other cases »

134

// Store the user list

def userList = User.list()

// Specific rendering for predefined content types

withFormat {

html {render (template: 'user', model:[userList: userList])}

json {render userList as JSON}

'*' {render userList as XML}

}

Data handling – Response – Builder

 Used to build specific response format

 Handy for isolated needs

 No opportunity to customize global rendering for an object
 Use marshallers instead

 Extremely verbose and messy

135

Data handling – Response – Builder

136

def userList = User.list()

def builder = new JsonBuilder()

// Build JSON

def result = builder.users {

// Iterate over each user of the list

userList.each {

// Create new node for each

User userInstance -> user {

// Declare all properties

id userInstance.id

address (id: userInstance.address.id)

age userInstance.age

username userInstance.username

// Can go deeper in associations

messages {

userInstance.messages.each {

Message messageInstance -> message(id: messageInstance.id)

}

}

}

}

}

// Render content as String

render builder.toPrettyString()

Data handling – Response – Marshallers

 Extremely useful if you need to customize the rendering of a given Object

 Same syntax as Builder
 Also extremely verbose and messy

 Allow global declarations

 Can be declared
 In the Bootstrap.groovy but not ideal
 In the Groovy sources directory, cleaner (src/main/grooy)

 Alternatively some plugins helps to keep project cleaner

 Simply a closure returning map on domain class

 Have to build custom marshaller for
 Domain class
 Domain class collection

137

Data handling – Response – Marshallers

138

// Register marshaller on domain class

JSON.registerObjectMarshaller(User)

{

def result = [:]

result.id = it.id

result.age = it.age

result.username = it.username

// Should also declare custom marshaller for associations

// Address & Message

result.address = it.address

result.messages = it.messages

return result

}

Grails – Services
Basics

139

Services – Basics

 Should contain all the reusable business logic
 Avoid business logic in controllers

 Located under « grails-app/services » directory

 Convention : Class name should end with « Service »

 Often in charge of persistence operation
 Should be Transactional in most cases
 Default Transactional before Grails 3.1
 On demand since

 Transactional Annotation
 withTransaction method

140

Reminder – Transactions – A.C.I.D.

 Transactional environment must respect rules : A.C.I.D. properties

 A for Atomicity
 Most basic principle of transactions
 Either everything or nothing is saved
 Commonly achieved by using BEGIN, COMMIT and ROLLBACK keywords

 Once a transaction is started (BEGIN)
 Everything will be executed and saved (COMMIT)
 Or everything will be reverted to its original state (ROLLBACK)

 In Grails environment, Exceptions throw within a transaction can trigger a rollback
 Rollback can occur event when not explicitly called

141

Reminder – Transactions – A.C.I.D.

 C for Consistency
 Database state before and after transaction must respect unicity, foreign key or other

constraints
 Consistency must be preserved
 Some exceptions for the « in the middle » state

 I for Isolation
 Most difficult issue
 Define how to handle concurrent read / update / delete on a database
 The data I am going to update may have changed between the time read it and the moment I

will update
 Write the data without checking may revert previous changes
 Revert the changes I was going to make cancels an action that should have been executed
 Going in the middle may lead to a data corruption in the database

142

Reminder – Transactions – A.C.I.D.

143

Transation A

/

Retrieve User « Bob »

From database

Set User Score (12)

to 14

Commit changes

User score = 14

/

Transation B

Retrieve User « Bob »

From database

/

Update User Score

Score = Score (12) + 1

/

Commit changes

User score = 13

I for Isolation

 Many mechanism to handle this
 Customizable isolation level
 Depends on the DBMS

 Drawback : Deadlock

 Forces DBMS to Rollback “some” transactions

Reminder – Transactions – A.C.I.D.

144

 D for Durability
 If a commit is validated by the DBMS data integrity must be maintained
 Even if

 An error occurs
 Server is shut down

 Server must make sure data are not lost

 Conclusion
 Transactions are essentials for data integrity
 Transactions will lead to issues that should be resolved with good development practices

Services – @Transactional

 Can define a service as « Transactional » with this Annotation

 Can fine tune Transactional behaviour
 readOnly option

 Can override at method level

 Rollback triggered on RuntimeException
throw

145

@Transactional

class UserService {

def create() { }

@ReadOnly

def list() { }

@Transactional(readOnly = true)

def get() { }

@NotTransactional

def doThis() { }

}

Services – withTransaction

 Programmatic transaction

 No annotation needed

146

class UserService {

def create(String name, Integer age) {

User.withTransaction {

status ->

new User(name: name, age: age).save()

}

}

}

Services – withTransaction

 Programmatic rollback using TransactionStatus

setRollbackOnly method will set the transaction state as “rollback-only”

147

def edit(Long id, String name, Integer age) {

User.withTransaction {

status ->

def userInstance = User.get(id)

userInstance.name = name

userInstance.age = age

// If conditions are not met, rollback

if (age < 18)

status.setRollbackOnly()

else userInstance.save()

}

}

Services – Scopes

 Like Controllers Services has scopes

 Default scope
 Singleton – One overall instance of the service

 Available scopes
 Prototype – new Service instance for each injection
 Request – new Service per request
 Session – new Service for each user session
 Flash – new Service for current and next request
 Flow – new Service for the scope of the flow (web flow)
 Conversation – new Service for the scope of the conversation (web flow)

148

Services – Injection

 Usage after injection

 Injection by convention

 Same goes for
 Services
 Bootstrap
 Taglibs

149

// UserService.groovy

class UserService {

def create(…) {

[…]

}

}

// UserController.groovy

class UserController {

// Injection by name (first is lower case)

def userService

// Can define type, equivalent

UserService userService

def index() {

[…]

userService.create("Bob", 25)

[…]

}

}

Grails – GORM & Hibernate
Querying

150

Grails – GORM – Querying – Basic CRUD

 Create

 Create an object instance

 Call save() method to ask Hibernate to persist

151

// Create an object instance

def exampleInstance = new Example(name: "name", rating: 10, isValid: true)

// Ask GORM > Hibernate to persist this instance

exampleInstance.save()

class Example {

String name

Integer rating

Boolean isValid

}

Grails – GORM – Querying – Basic CRUD

 save & delete
 flush option : ask an immediate flush of the persistence context, persist or delete

immediately
 returns null on validation fail

 save specific options
 validate : define if validation should be skipped
 insert : define if Hibernate should use SQL INSERT, useful to clarify INSERT / UPDATE when

assigning ID
 failOnError : if set to “true”, will throw an exception and stop the application server if

validation fails. Must use when setting essential data.
 deepValidate : default “true”, if set to false, do not validate associations

152

Grails – GORM – Querying – Basic CRUD

 Example

153

// Instantiate new User

def userInstance =

new User(username: "username",

email: "user@email.com",

description: "description",

address: new Address())

.addToMessages(new Message(content: "message content"))

// If immediate save is not successful (validation fail)

if (!userInstance.save(flush: true))

println "Validation failed, User has not been saved to database"

Grails – GORM – Querying – Basic CRUD

 Read

 Choose wisely, strong impact long term

154

// Retrieve the object from database

def exampleInstance = Example.get(1)

// Retrieve a read-only object from the database

def exampleInstanceReadOnly = Example.read(1)

// Retrieve a proxy for the designated object instance

def exampleInstanceLoad = Example.load(1)

Grails – GORM – Querying – Basic CRUD

 Update
 Load object instance
 Edit properties
 Call persist method

 Delete
 Same as Create with delete() method

155

// Update

def exampleInstance = Example.get(1)

exampleInstance.name = "new name"

exampleInstance.save()

// Delete

exampleInstance.delete()

Grails – GORM – Querying - Dynamic Finders

 Dynamic Finders
 “Auto-Magically” methods generated using code synthesis at runtime
 Based on the properties of the class
 Use like a static method
 Ideal for simple queries

 Quickly difficult to read / understand with long queries
 No optimisation

 Where Queries

 Criteria Queries

 Hibernate Query Language (HQL)

156

Grails – GORM – Querying - Dynamic Finders

 Data fetching

157

// Get from ID, uses cache, one request

def userInstance = User.get(1)

// Strictly identical using dynamic finders

// Slower than previous method

def sameUserInstance = User.findAllById(1)

// Get all

def allUsers = User.list()

def alsoAllUsers = User.getAll()

// Get & get all on specific property

def user = User.findByUsername("username")

def userList = User.findAllByEmailLike("%@email.com")

Grails – GORM – Querying - Dynamic Finders

 Data fetching

158

// Use this when you need all raw data

def userList = User.getAll()

// Same as getAll, can use HQL, support pagination

def sameUserList = User.findAll("from User as u where u.username=?",

['username'],

[max: 10, offset: 5])

// Same as getAll, support pagination and few more options

def anotherUserList = User.list(max: 10, offset: 5)

 Dynamic Finders

159

class Book {

String title

Author author

}

class Author {

String name

}

def bookInstance = Book.findByTitle("title")

assert bookInstance instanceof Book

def bookList = Book.findAllByTitle("title")

assert bookList instanceof List // even if empty or only one entry

def authorInstance = Author.findByName("authorsName")

def otherBookInstance = Book.findByTitleLikeAndAuthor(“%title%", authorInstance)

Grails – GORM – Querying - Dynamic Finders

 Operators
 InList
 Like / Ilike
 LessThan / LessThanEquals / GreaterThan / GreaterThanEquals
 IsNull / IsNotNull
 Between
 Rlike
 NotEqual
 InRange

160

Grails – GORM – Querying - Dynamic Finders

 Useful for simple cases

 Quickly messy

161

Grails – GORM – Querying - Dynamic Finders

Grails – GORM – Querying – Where Queries

 Dynamic Finders

 Where Queries
 More flexible than Dynamic finders
 Less verbose than Criteria
 Use regular Groovy comparison operators
 Two steps

 Build Query
 Execute request

 Criteria Queries

 Hibernate Query Language (HQL)

162

Grails – GORM – Querying – Where Queries

163

Operators Description

== Strict equality

!= Difference

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

in Contained within list

==~ Case sensitive like

=~ Case insensitive like

Grails – GORM – Querying – Where Queries

 Examples

164

class Book {

String title

Author author

}

class Author {

String name

}

// Build the query

def bookQuery = Book.where { title == "title" }

// Execute the built query

Book bookInstance = bookQuery.find()

List bookList = bookQuery.findAll()

// Alternative for immediate execution

List otherBookList = Book.findAll { title == "title" }

List sortedBookList = Book.findAll (sort: "title") { title == "title" }

Grails – GORM – Querying – Where Queries

165

Method Description

second / minute / hour The second / minute / hour of a date property

day / month / year The day / month / year of a date property

lower / upper Converts a string

length The length of a string

trim Trims a string

class Comment {

Date dateCreated

}

// Select comments where creation year is 2019

def commentQuery = Comment.where {

year(dateCreated) == 2019

}

Grails – GORM – Querying – Where Queries

 Complex queries

166

def bookQuery = Book.where {

// Complex query on title

(title ==~ "%title%" && title != "wrong title")

// Query on association

author { name ==~ "%authorsName%" && name != "authorsName1" }

}

Book bookInstance = bookQuery.find()

Grails – GORM – Querying – Where Queries

167

Subquery functions Description

avg The average of all values

sum The sum of all values

max The maximum value

min The minimum value

count The count of all values

property Retrieves a property of the resulting entities

Grails – GORM – Querying – Where Queries

 Subqueries
 Impossible with Dynamic finders

168

// Select comments with rating above average

def commentQuery = Comment.where {

rating > avg(rating)

}

// Adding additional criteria with closure

// Select comments

// > with rating above average rating where comment author is like Bob%

// > where comment author is not Bob

def otherCommentQuery = Comment.where {

rating > avg(rating).of { author ==~ "Bob%" } && author != "Bob"

}

class Comment {

Integer rating

String comment

String author

static belongsTo = Book

}

Grails – GORM – Querying – Criteria

 Dynamic Finders

 Where Queries

 Criteria Queries
 More flexible than Where queries
 A lot more verbose than Where queries
 Build with createCriteria() or withCriteria() method
 Top level conditions bound with logical “AND”
 Can group criteria with and / or / not blocks
 Last resort before using HQL

 Hibernate Query Language (HQL)

169

Grails – GORM – Querying – Criteria

170

Method Description

eq Strict equality

ne Difference

gt Greater than

lt Less than

ge Greater than or equal

le Less than or equal

inList Contained within list

like Case sensitive like

ilike Case insensitive like

Grails – GORM – Querying – Criteria

 Example

171

// Create criteria on Comment domain

def criteria = Comment.withCriteria {

// Check "author" property value is equal to "Bob"

eq("author","Bob")

// Check the "comment" property is like "%comment%" with case insensitive

ilike("comment","%comment%")

// Or rating value is greater than 3

or {

gt("rating", 3)

}

}

Grails – GORM – Querying – HQL

 Dynamic Finders

 Where Queries

 Criteria Queries

 Hibernate Query Language (HQL)
 Most flexible option
 Addressing queries directly to the ORM
 Lesser abstraction, better performances overall
 Building queries with find(), findAll() or executeQuery() methods
 Better than SQL to remain compliant with any DBMS

172

Grails – GORM – Querying – HQL

 Example

173

// Classic HQL select

def exampleInstance = Example.find("from Example as e where e.name = 'name'")

// With named paramter, always use this method

def otherExampleInstance =

Example.find("from Example as e where e.name = :name",

[name: "name"])

Grails – GORM - Conclusion

174

Module 3:
REST API
Concepts – Development – Testing – Security

175

REST API
Concepts

176

Plan

 API REST

 Principe d’implémentation

 Verbes HTTP

 Génération de messages

 HTTP Status Code

 Formats d’échange

 HATEOAS : HAL

 Exemple détaillé

 Mécanismes de protection

177

REST

 Born around 2000

 Roy Fielding PhD

 REpresentational State Transfer

 Relies entirely on HTTP

 Accessing resources

 HTTP verbs usage

 REST RESTful

178

REST & SOAP

REST
 Architectural principles

 SOAP
 Specification of a standard communication protocol

179

REST & SOAP

 Architectures to provide web

 Major differences
 Implementation
 Readability
 WSDL

 Required message format
 Accessible methods
 Service location

180

REST & SOAP – Pros & Cons

 REST
 Achitecture / Pattern
 Format agnostic
 Relies entirely on HTTP
 Lightweight
 Easily readable
 Cache handling (HTTP GET)
 Should provide documentation
 Stateless
 No overload
 Less verbose
 No added functionalities (Security ?)

181

 SOAP
 Protocol
 XML only
 Not limited to HTTP
 Heavy duty
 Less readable
 HTTP POST, no Cache
 WSDL
 Either Statefull or Stateless
 SOAP Enveloppe + Optional Headers
 Well structured
 Optional layers to add functionalities

REST & SOAP

 No real winner
 Both viable solution for different cases

 SOAP
 Security is a must

 Handling health data
 Banking area

 Need other layers to add functionalities

 REST
 Prototypes
 Need for a high Client – Server segmentation
 Need something else than XML

182

REST – Properties & Constraints

 Client – Server Segmentation
 Improve portability of user interfaces
 Improve scalability

 Focus on Server

 Independent components
 Simplifies evolutions

 Cacheability
 Clients and Servers can cache responses data
 Responses must be declared as cacheable (if it’s true)

 Prevent User from getting outdated or wrong data

 Improve extensibility

183

REST – Properties & Constraints

 Stateless
 State management is achieved by the Client
 Server do not store any context about Client
 Improve Client – Server segmentation
 Client requests must contain all necessary information to allow Server to respond

accordingly
 Exception for session information storage

 So User doesn’t have to send identification data each time

 No permanent link between Client and Server
 No Server monopolization by a Client
 No Server saturation if handling multiple Clients at once
 Better extensibility

184

REST – Properties & Constraints

 Layered system
 System may be layered with hierarchy notion

 Constrain component behaviour
 Each component cannot access component beyond n+1 or n-1

• Each component is less complex

• Reduce overall complexity

 Ability to handle growing needs
 Load balancers
 Intermediary servers
 Must be transparent

 Drawback, more layers, more latency
 Can be limited with shared caches

185

REST – Properties & Constraints

 Code on demand (Optional)
Server can temporarily extend client functionalities providing executable code

 Java applets
 Javascript

 Increase flexibility
 Reduce visibility
 Security

186

REST – Properties & Constraints

 Uniform interface – 4 constraints
 Resources identification

 Use URIs to idenfify a resource
 Representation is not the resource itself
 Allow components to evolve independently

 Resource manipulation through representations
 Once a resource is known, can manipulate with HTTP methods (GET, POST, PUT & DELETE)

 Self descriptive messages
 Each message include enough information to understand how to handle it (formats, cache timestamps)

 Hypermedia as the engine of application state (HATEOAS)
 Responses should include links, allowing client to « browse » available actions on the current resource

 Pros & cons
 Data is normalized, structire is predictable
 Component evolution is easier
 Client side implementation can be more challenging
 Reduce overall performances

187

REST API
Implementation principle

188

REST – Implementation principle

 Define resources and resources collections

 Create resources
 Attributes
 Constraints

 Define exchange format
 Unique format
 Multi format

189

REST – Implementation principle

 Message semantic linked to HTTP methods

 HTTP Verbs / Methods RFC2616
 GET : Retrieve a resource / resource collection representation
 POST : Create a new resource
 PUT / PATCH : Update an existing resource
 DELETE : Delete a resource
 HEAD : Retrieve metinformation about a resource (~GET)

 Should not have any body
 Only metadata

OPTIONS : Determine requirements and available actions without initiating a resource
retrieval
 Underestimated part of HTTP protocol
 Can be used to improve services interconnection

190

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

REST – Format handling

 Client asks format with « Accept » Header

 Server confirms with « Content-type » Header

191

Accept: <MIME_type>/<MIME_subtype>
Accept: <MIME_type>/*
Accept: */*

Content-Type : <MIME_type>/<MIME_subtype>
Content-Type : <MIME_type>/*
Content-Type : */*

REST API
HTTP Methods

192

REST – HTTP Methods – GET

 Used to retrieve a resource representation
 No body
 Parameters after URI
 Cacheable
 Bookmarkable

 Never create / update / delete a resource

 Idempotent

 Return
 HTTP 200 (OK)
 HTTP 404 (NOT FOUND)
 HTTP 400 (BAD REQUEST)

193

REST – HTTP Methods – POST

 Used to create a resource
 Not cacheable
 Not bookmarkable

 Alternative to GET when too much parameters

 Return
 HTTP 201 (CREATED)
 HTTP 204 (NO CONTENT)
 HTTP 404 (NOT FOUND)
 HTTP 400 (BAD REQUEST)

194

REST – HTTP Methods – PUT

 Used to update a resource
 Not cacheable
 Not bookmarkable

 Some APIs create resource if targetted resource is not found

 Idempotent

 Return
 HTTP 200 (OK)
 HTTP 201 (CREATED)
 HTTP 204 (NO CONTENT)
 HTTP 404 (NOT FOUND)
 HTTP 400 (BAD REQUEST)

195

REST – HTTP Methods – PATCH

 Used to update a resource
 Not cacheable
 Not bookmarkable

 Should be preferred to PUT for partial updates

 Return
 HTTP 200 (OK)
 HTTP 204 (NO CONTENT)
 HTTP 404 (NOT FOUND)
 HTTP 400 (BAD REQUEST)

196

REST – HTTP Methods – DELETE

 Used to delete a resource
 Not cacheable
 Not bookmarkable

 Return
 HTTP 200 (OK)
 HTTP 204 (NO CONTENT)
 HTTP 404 (NOT FOUND)
 HTTP 400 (BAD REQUEST)

197

REST – HTTP Methods – OPTIONS

 Used to retrieve available communication options
 Not cacheable
 Not bookmarkable

 No action on resources

 Return
 HTTP 200 (OK)
 HTTP 404 (NOT FOUND)

198

HTTP/1.1 200 OK
Allow: GET,HEAD,POST,OPTIONS
Content-Type: text/html; charset=UTF-8
Date: Wed, 25 Sep 2019 13:17:54 GMT
Content-Length: 0

REST – HTTP Methods – HEAD

 Used to retrieve metainformation
 Cacheable
 Not bookmarkable

 Should not return any body

 Same header as GET on same resource

 Return
 HTTP 200 (OK)
 HTTP 404 (NOT FOUND)

199

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Date: Wed, 25 Sep 2019 13:17:54 GMT
Content-Length: 15426
Last modified: Tue, 24 Sep 2019 00:00:00 GMT

REST API
Exchange

200

REST – Exchange (1)

 Client side – Request building

 Define resource
 Singleton resource
 Resource collection

 Define the action, use appropriate HTTP method
 GET
 POST
 PUT
 PATCH
 DELETE
 HEAD
 OPTIONS

201

REST – Exchange (2)

 Server side – Request handling & resolution

 Define requested resource (URI)

 Define HTTP method used

 (Optional) Access control & permissions
 Read and check token

 Resolve action

 Generate response
 Define format
 Return resource or resource collection representation with appropriate format
 Return appropriate HTTP response code

202

REST – Exchange (3)

 Client side – Response reading
 Check HTTP response code

 HTTP 2xx response code : success
 HTTP 3xx response code : redirection
 HTTP 4xx / 5xx response code : error

 HTTP 2xx, if request method was
 GET : Parse response to retrieve resource representation
 POST : Resource was successfully created
 PUT / PATCH : Resource was successfully updated
 DELETE : Resource was sucessfully deleted

 HTTP 4xx / 5xx
 An error occured
 May find reasons in the response
 HTTP response code may help

203

REST – Exchange – Conclusion

 Very similar to regular HTTP exchanges

 Request building is basic
 Depends on environment
 Native mobile development using basics libraries
 Web development using Ajax

 Response handling
 XML / JSON / … parser

204

REST – Exchange – Conclusion

 Testing
 Browser development and debugging tools

 Chrome DevTools
 Firefox Firebug

 cURL
 Postman

 Knowledge of HTTP is a must : RFC2616

 HTTP response codes : List

 Basic knowlegde about redirections

205

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://fr.wikipedia.org/wiki/Liste_des_codes_HTTP#Erreur_du_client

REST API
HTTP Response Codes

206

REST – HTTP Response Codes

 200 OK
 Request was successfull
 Content depends on used HTTP method

 201 CREATED
 Request was successfull
 Resource was created

 204 NO CONTENT
 Request was successfull
 No data was returned

207

REST – HTTP Response Codes

 400 BAD REQUEST
 Server wont process request due to an error

 Malformed request
 Error on provided parameters
 …

 401 UNAUTHORIZED
 Server will not allow access to define resource without proper authentication

 403 FORBIDDEN
 Request was valid but the provided authentication do not allow access to this resource

 404 NOT FOUND
 Requested resource is not be found

208

REST – HTTP Response Codes

 405 METHOD NOT ALLOWED
 HTTP method used is not supported

 500 INTERNAL SERVER ERROR
 Generic error message
 Often returned by application or web server
 Should not be intentionally returned, too vague

 301 MOVED PERMANENTLY
 Provide a new URI for requested resource
 Use this to redirect request with trailing slash

 302 FOUND – MOVED TEMPORARILY
 Provide a new URI for requested resource

209

REST API – HATEOAS & HAL
Hypermedia As The Engine Of Application State

210

REST – HATEOAS – Concept

 Hypermedia As The Engine Of Application State
 REST Constraint
 Client does not have to know the deployed application
 Increase Client – Server segmentation

211

REST – HATEOAS – Concept

 Classic response from a REST API

212

REST – HATEOAS – Concept

 Response from a REST API implementing the HATEOAS Constraint

213

REST – HATEOAS – HAL

 HAL : Hypertext Application Language

 One of many HATEOAS implementation

 Principles
 Simple format to link resources
 Make the API browsable
 More difficult to set up at first

 Many libraries to produce and consume HAL

 Define conventions to describe resources as JSON or XML

214

REST – HATEOAS – HAL

 Objectives
 Spend less time on format design
 Focus on implementation and documentation
 Build « explorable » APIs
 Associations enable resources identification and possible interractions
 Base entry point allow developer to discover links

 Can be considered as an API descriptor

 API exploration makes documentation « almost useless »

215

REST – HATEOAS – HAL

 Based on two types of representations

 Resources
 Contain links
 Define other subresources
 Define a state

Link
 Define a target (URI)
 Linked to a relation (rel)
 Contains optional properties to manage version and format handling

216

REST – HATEOAS – HAL

217

REST – HATEOAS – HAL – Example

 Resource links (1)

 Resource properties (2)

 Subresources and their links (3)

218

REST – HATEOAS – CURIEs

 Compact URIs

 Shortcut for links

 May have many different

 Use of a placeholder ({rel})
 Calling find method on http://example.com/docs/rels/orders{?id}

219

http://example.com/docs/rels/orders{?id}

REST – HATEOAS – HAL – Content Type

 Classic REST

 Specific to implementation

220

REST API – Detailed Example
Basic REST API implementation & Testing

221

class Book {

String title

String author

Date dateCreated

static belongsTo = [library: Library]

}

REST – Implementation example

 Basic model with two entities

222

class Library {

String name

String address

static hasMany = [books: Book]

}

REST – Implementation example

 Initialisation data

223

class BootStrap {

def init = { servletContext ->

new Library(name: "Library name", address: "Library address")

.addToBooks(new Book(title: "Library's first book", author: "Unknown"))

.addToBooks(new Book(title: "Library's second book", author: "Unknown"))

.addToBooks(new Book(title: "Library's last book", author: "Unknown"))

.save(flush:true, failOnError: true)

}

}

REST – Implementation example – Resources

 Resource available

 Library
 Library resource representation

http://my.server.com/library/{id}
 Library collection representation

http://my.server.com/libraries

 Book
 Book resource representation

http://my.server.com/book/{id}
 Book collection representation

http://my.server.com/books

224

http://my.server.com/library/{id}
http://my.server.com/libraries
http://my.server.com/library/{id}
http://my.server.com/books

REST – Implementation – Available actions

225

URI Description Réponses

GET http://server/library/
GET http://server/libraries/

Retrieve library list 200 OK + Resource collection representation
404 / …

POST
http://server/library/
http://server/libraries/

Create library 201 OK
404 / …

GET
http://server/library/id

Retrieve library from id 200 OK + Resource representation
404 / …

PUT
http://server/library/id

Update library 200 OK
404 / …

DELETE
http://server/library/id

Delete library 200 OK
404 / …

http://server/library/
http://server/libraries/
http://server/library/
http://server/libraries/
http://server/library/id
http://server/library/id
http://server/library/id

REST – Implementation – Available actions

226

URI Description Réponses

GET http://server/library/
GET http://server/libraries/

Retrieve library list 200 OK + Resource collection representation
404 / …

 Two ways to access resource collection (GET / POST)

 http://server/library
 Considered by many as wrong or not enough precise

 http://server/libraries
 Considered as the best option

 Some may use both with proper redirection

http://server/library/
http://server/libraries/
http://server/library
http://server/libraries

URI Description Réponses

POST
http://server/library/
http://server/libraries/

Create library 201 OK
404 / …

PUT
http://server/library/id

Update library 200 OK
404 / …

REST – Implementation – Available actions

227

 Important to differentiate resource from resource collection

 GET and POST requests will target resource collection

 GET / PUT / PATCH / DELETE requests will target a simple resource
 Identified by ID

http://server/library/
http://server/libraries/
http://server/library/id

REST – Implementation – Available Actions

228

GET http://server/libraries/

GET http://server/library/1

http://server/libraries/
http://server/library/1

REST – Implementation – Testing

 Client Url Request Library
 Build and execute HTTP requests
 Retrieve server response

 Options importantes
 -X HTTP method
 -I Prints out response header
 -H Define request header
 -d Define request data

 -v Verbose

229

REST – Implementation – Grails

 Steps for the simplest handmade REST API

 Create a controller to handle client requests « ApiController »

 Define methods to handle the differents entry points

230

class Book {

String title

String author

Date dateCreated

static belongsTo = [library: Library]

}

class Library {

String name

String address

static hasMany = [books: Book]

}

// ApiController.groovy

class ApiController {

/**

* Will handle GET / PUT / PATCH / DELETE requests

*/

def book() {render "ok"}

/**

* Will handle GET / POST requests

*/

def books() {}

def libraries() {}

def library() {}

}

REST – Implementation – Grails

231

render "ok"

REST – Implementation – Grails

 Test it with a cURL request

232

$ curl http://localhost:8080/api/book -I
HTTP/1.1 200
Content-Type: text/html;charset=utf-8
Transfer-Encoding: chunked
Date: Wed, 02 Oct 2019 17:33:29 GMT

REST – Implementation

 Basic implementation
 Handle basic errors
 Handle request methods
 Handle basic formats

 In any case
 Return explicit HTTP code

233

def book() {

switch(request.getMethod())

{

case "GET":

if (!params.id)

return response.status = 400

def bookInstance = Book.get(params.id)

if (!bookInstance)

return response.status = 404

response.withFormat {

xml { render bookInstance as XML}

json { render bookInstance as JSON }

}

break

case "PUT":

break

case "PATCH":

break

case "DELETE":

break

default:

return response.status = 405

break

}

return response.status = 406

}

REST – Implementation – Grails

 Test it with a cURL request

 Data content

234

$ curl http://localhost:8080/api/book/1 -H "Accept: application/json" -X GET -i
HTTP/1.1 200
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Wed, 02 Oct 2019 17:47:49 GMT

REST – Implementation – Grails

 Testing errors as well : unhandled content type

 Other case : unhandled HTTP method

235

$ curl http://localhost:8080/api/book/1 -H "Accept: text/csv" -X GET -i
HTTP/1.1 406
Content-Length: 0
Date: Wed, 02 Oct 2019 17:47:49 GMT

$ curl http://localhost:8080/api/book/1 -H "Accept: text/json“ -X POST -i
HTTP/1.1 405
Content-Length: 0
Date: Wed, 02 Oct 2019 17:47:49 GMT

REST – Implementation – Grails

 Handle format
 With methods

 With simple logic

236

response.withFormat {

xml { render bookInstance as XML}

json { render bookInstance as JSON }

}

switch(request.getHeader("Accept"))

{

case 'json':

case 'text/json':

case 'application/json':

render bookInstance as JSON

break

case 'xml':

case 'text/xml':

case 'application/xml':

render bookInstance as XML

break

}

REST – Implementation – Grails

 API generation with Annotations

 Full REST API

 All formats handled

237

@Resource(uri = 'books', formats=['json', 'xml'])

class Book {

String title

String author

Date dateCreated

static belongsTo = [library: Library]

static constraints = {

}

}

REST – Implementation – Grails

 Can map REST resources from URLMappings

238

class UrlMappings {

static mappings = {

"/books"(resources: "book", excludes:['update','create'])

"/books"(resources: "book", includes:['index','show','delete'])

"/books"(resources: "book")

{

"/authors"(resources: "author")

}

}

}

REST API – Security
Protection mecanisms

239

REST – Security

 One of main issues with REST APIs

 Many solutions
 Authentication
 Token
 Signature
 Single usage signed requests
 HTTPS

240

REST – Security – Hash

 Fingerprint of a file / string / …

 Fixed size

 Originally for integrity checks

 Weaknesses : Hash reversal
 Dictionnaries – Brute force

 Matching list of strings and hashes
 500 most used passwords = 75% of users
 Few seconds if less than 6 characters (including letters, numbers and special characters)

 Rainbow tables
 Same principle but precomputed
 Trading processing for storage
 Weak against salted hash (cannot precompute all possible passwords with all possible salt)

241

REST – Security – Authentication

 Responds to the need to identify the sender of the request

 Classic authentication
 Send login + password (hash) in the request
 Always use a "salt" improve safety

 Problems
 Can brute force easily
 Credentials sent
 If the request is intercepted we can have fun on the API with the retrieved identifiers

242

REST – Security – Token

 Simple implementation to limit exchanges containing credentials
 The credentials are sent to retrieve a token with a limited lifetime
 We then use the "Token" to play the role of credentials
 The token have no obvious link with the credentials
 We limit the risks

 Problem
 If the "Token" is intercepted, we can always use the API until the token timeout

243

REST – Security – Signature

 Aims at guaranteeing the identity of the sender as well as the integrity of the
request
 Using HMAC type algorithms
 Calculated via a "Hash" in combination with a secret key
 Sender

 Encrypt the document and the hash of the document with his private key

 Receiver
 Identify the sender by decrypting the whole thing to get the hash (can be created only by the private key

wearer)
 Verify document integrity rebuilding the hash of the document and comparing

 In case of interception, you can not recreate a valid signature for a new request

 Problem
 If the request is intercepted, it can be replayed

244

REST – Security – Signature

245

REST – Security – Signature

246

REST – Security – Single use signed requests

 Used by the majority of serious REST API providers

 Additional storage of the "Timestamp" of the last request by the Client and the
Server

 Use this timestamp for the creation of the signature

 Overcomes the last remaining problem: even if the request is intercepted, it can
not be replayed

247

REST – Security – HTTPS

 Channel security

 Assurance for the server that the request received is identical to the one sent

 Assurance that the sender is the person claiming to have sent the request

 End-to-end encryption

 Man in the middle useless

 Combined with other methods for added security

248

REST – Security – HTTPS

 Channel security

 Assurance for the server that the request received is identical to the one sent

 Assurance that the sender is the person claiming to have sent the request

 End-to-end encryption

 Man in the middle useless

 Combined with other methods for added security

249

