Hadoop / Big Data

Benjamin Renaut <renaut.benjamin@tokidev.fr>

MBDS I 2019 - 2020



Apache Spark




Setup
T Tt

* For this exercise, yet again the same virtual machine will be used.

* You can start by launching the virtual machine. It is nhot necessary (at this step
at least) to start Hadoop (neither Yarn nor HDFS).

« Spark has already been installed in the VM.



Part 1 — Spark shell

* Your first step, in order to familiarize yourself with the Spark shell, will be to
execute the example shown during the course (the anagrams detection).

« Start by launching the Spark shell in local mode, simulating a two-nodes
cluster:

pyspark --master "local[2]"

 Then, attempt to load and check out the file of common English words used
previously (make sure it is available in the local filesystem):

words=sc.textFile('common words en subset.txt')
words.collect ()

Observe the results; make sure the data has been successfully loaded.



Part 1 — Spark shell

T .,
 Then, run the map:

tuples=words.map (lambda x: (''.join(sorted(list(x))), x))
tuples.collect()

Observe the results.

* Then, run the groupByKey (the rough equivalent to Hadoop’s « shuffle »):

grouped=tuples.groupByKey () .mapValues (lambda x: list(x))
grouped.collect()

Observe the results.



Part 1 — Spark shell

-4 5
 Then, run filter:

filtered=grouped.filter (lambda x: len(x[1])>1)
filtered.collect ()

Observe the results.
» Afterwhich you can run the reduceByKey:

res=filtered.reduceByKey (lambda a,b: "%s, %s" % (a, b))
res.collect()

Observe the results.



Part 1 — Spark shell

* Finally, also apply the reduce to the unfiltered RDD and save both datasets on
disk:
res2=grouped. reduceByKey (lambda a,b: "%s, %s" % (a, b))
res.saveAsTextFile('file:///home/mbds/res-words-filtered')
res2.saveAsTextFile('file:///home/mbds/res-words-unfiltered')

Make sure you indeed managed to export the results in the two directories
« res-words-filtered » and « res-words-unfiltered ».

* You can also of course try out various other operations described during the
course to familiarize yourself with them.



Part 2 — Spark development

* You must now implement a first Python Spark program, to solve the « common
friends » issue outlined during the first Hadoop course.

* Your input data:
http://cours.tokidev.fr/bigdata/tps/tp5 friends.txt
You can download said data to the VM using:
wget http://cours.tokidev.fr/bigdata/tps/tp5 friends.txt

« Remember that each line describes a social network user followed by his list

of friends; your objective is to pinpoint all common friends in the social
network (for all possible couples of distinct users).



Part 2 — Spark development

« You then must implement a Spark version of the graph breadth-first-search
algorithm described - and implemented for Hadoop - in previous course
material. Remember that you will need to loop and implement a stopping
condition once all nodes are flagged as having been processed.

 The input data can be downloaded to the VM using:

wget http://cours.tokidev.fr/bigdata/tps/tp5 graph.txt

* Test your program first in local mode (make sure to simulate at least two
nodes); then in Hadoop mode (you will then need to start Hadoop first).

 Itis advised to start with a first, one-step graph run instead of the whole
looped breadth-first-search logic directly for ease of debug.



Part 2 — Spark development

* Finally, you must develop the same sales analysis software that was written
during the first practical exercise session.

« Remember that your program must be able to perform four different analysis
types; and allow the user to pick which using a command line argument. As
when running an Hadoop program, here too you can specify additional
command line argument; using a synopsis similar to:
spark-submit --master "local[2]" FICHIER.py argl arg2..

... you can then retrieve those command line arguments from Python using the
sys.argv global variable (after doing import sys).

 The input data is identical to the one previously used:

http://cours.tokidev.fr/ibigdatal/tps/sales_world_10k.csv



Part 2 — Spark development

T I EEEEEEEEEE———————————

* For the development tasks, you can either write your code on your host
machine and then either copy the file or copy-paste in the VM; or alternatively
write your code in the VM directly.

* You can also attempt to install Spark on your host machine if you so wish
(which may prove challenging on Windows systems).

« On the virtual machine, you can test your programs by doing:
spark-submit --master '"local[2]" FICHIER.py

 If you programs work, it is advised to then attempt to run them in « true »
Hadoop mode (after starting Hadoop) using, for example:

spark-submit --master "yarn" FICHIER.py



