
MBDS 2019 - 2020

Hadoop / Big Data

Benjamin Renaut <renaut.benjamin@tokidev.fr>



TP 6

Apache Spark



1

Setup

● For this exercise, yet again the same virtual machine will be used.

● You can start by launching the virtual machine. It is not necessary (at this step 
at least) to start Hadoop (neither Yarn nor HDFS).

● Spark has already been installed in the VM.



2

Part 1 – Spark shell

● Your first step, in order to familiarize yourself with the Spark shell, will be to 
execute the example shown during the course (the anagrams detection).

● Start by launching the Spark shell in local mode, simulating a two-nodes 
cluster:

pyspark --master "local[2]"

● Then, attempt to load and check out the file of common English words used 
previously (make sure it is available in the local filesystem):

words=sc.textFile('common_words_en_subset.txt')
words.collect()

Observe the results; make sure the data has been successfully loaded.



3

Part 1 – Spark shell

● Then, run the map:

tuples=words.map(lambda x: (''.join(sorted(list(x))), x))
tuples.collect()

Observe the results.

● Then, run the groupByKey (the rough equivalent to Hadoop’s « shuffle »):

grouped=tuples.groupByKey().mapValues(lambda x: list(x))
grouped.collect()

Observe the results.



4

Part 1 – Spark shell

● Then, run filter:

filtered=grouped.filter(lambda x: len(x[1])>1)
filtered.collect()

Observe the results.

● Afterwhich you can run the reduceByKey:

res=filtered.reduceByKey(lambda a,b: "%s, %s" % (a, b))
res.collect()

Observe the results.



5

Part 1 – Spark shell

● Finally, also apply the reduce to the unfiltered RDD and save both datasets on 
disk:

res2=grouped.reduceByKey(lambda a,b: "%s, %s" % (a, b))
res.saveAsTextFile('file:///home/mbds/res-words-filtered')
res2.saveAsTextFile('file:///home/mbds/res-words-unfiltered')

Make sure you indeed managed to export the results in the two directories 
« res-words-filtered » and « res-words-unfiltered ».

● You can also of course try out various other operations described during the 
course to familiarize yourself with them.



6

Part 2 – Spark development

● You must now implement a first Python Spark program, to solve the « common 
friends » issue outlined during the first Hadoop course.

● Your input data:

http://cours.tokidev.fr/bigdata/tps/tp5_friends.txt

You can download said data to the VM using:

wget http://cours.tokidev.fr/bigdata/tps/tp5_friends.txt

● Remember that each line describes a social network user followed by his list 
of friends; your objective is to pinpoint all common friends in the social 
network (for all possible couples of distinct users).



8

Part 2 – Spark development

● You then must implement a Spark version of the graph breadth-first-search 
algorithm described – and implemented for Hadoop – in previous course 
material. Remember that you will need to loop and implement a stopping 
condition once all nodes are flagged as having been processed.

● The input data can be downloaded to the VM using:

wget http://cours.tokidev.fr/bigdata/tps/tp5_graph.txt

● Test your program first in local mode (make sure to simulate at least two 
nodes); then in Hadoop mode (you will then need to start Hadoop first).

● It is advised to start with a first, one-step graph run instead of the whole 
looped breadth-first-search logic directly for ease of debug.



9

Part 2 – Spark development

● Finally, you must develop the same sales analysis software that was written 
during the first practical exercise session.

● Remember that your program must be able to perform four different analysis 
types; and allow the user to pick which using a command line argument. As 
when running an Hadoop program, here too you can specify additional 
command line argument; using a synopsis similar to:
spark-submit --master "local[2]" FICHIER.py arg1 arg2…
… you can then retrieve those command line arguments from Python using the 
sys.argv global variable (after doing import sys).

● The input data is identical to the one previously used:

http://cours.tokidev.fr/bigdata/tps/sales_world_10k.csv



10

Part 2 – Spark development

● For the development tasks, you can either write your code on your host 
machine and then either copy the file or copy-paste in the VM; or alternatively 
write your code in the VM directly.

● You can also attempt to install Spark on your host machine if you so wish 
(which may prove challenging on Windows systems).

● On the virtual machine, you can test your programs by doing:
spark-submit --master "local[2]" FICHIER.py

● If you programs work, it is advised to then attempt to run them in « true » 
Hadoop mode (after starting Hadoop) using, for example:

spark-submit --master "yarn" FICHIER.py


