
MBDS 2019 – 2020

Hadoop / Big Data

Benjamin Renaut <renaut.benjamin@tokidev.fr>



TP 2

Map/Reduce methodology – advanced Hadoop development



1

Setup

● The same virtual machine that was used previously will be used here.

● Your task is to implement a map/reduce program that will perform the breadth-
first search algorithm in a graph as described in the course material, and on 
the same example data.

● Reminder: you can start Hadoop using the command:

start-hadoop



2

Breadth-first search

● Implement the graph search algorithm described in the course material.

● For this task, and as described in the course, you will need to execute the 
same map/reduce program several times until a stopping condition (all nodes 
black), passing its previous output data as input data for the new run every 
time.

● The next slides give a few clue as to the functions you can research and use 
from the Hadoop API for this stopping condition.

● You can download the input data in the virtual machine using the command:

wget http://cours.tokidev.fr/bigdata/tps/graph_input.txt



3

Breadth-first search

● Please note the format of the initial file.

● This format follows the Hadoop standard: one key;value tuple per line, with a 
tab between the key and the value.

● In order to avoid Hadoop passing you the data with the key being set as the 
line number from the initial text file, you will therefore need to use a specific 
InputFormat so that it correctly interprets the keys.

● The InputFormat to be used has been mentionned in the course material; you 
can also easily research it yourself.



4

Breadth-first search

● For this first part, you should simply implement the algorithm and the re-run 
logic.

● You will need to access HDFS directly from your driver main class, in order to 
check the output of the previous run to pinpoint wether or not your stopping 
conditions (all graph nodes black) has been reached.

● In order to help with this, lookup the documentation for the class:

org.apache.hadoop.fs.FileSystem

● If your program works correctly, you should obtain the same final result as seen during 
the course. Please make sure to implement your program so that each intermediary step 
(the output of each run) is properly saved on HDFS.



5

Part 2

● You should now update your program so that it uses a specific Hadoop 
writable type: GraphNodeWritable, which you need to implement. This 
class should store the various graph node information (neighbours, 
colour, depth), and offer clean setters/getters to obtain and update 
those from the map and reduce classes.

● You will also need to use specific InputFormat and OutputFormat 
classes, which are provided.

● You can download the aforementioned classes here:

http://cours.tokidev.fr/bigdata/tps/graph_io_formats.zip



6

Part 2

● Your GraphNodeWritable class must implement the following method:

public String get_serialized()

… which should return a serialized string describing the node (you 
pick the format); this method is called by the provided OutputFormat 
class.

Your class also must have the following constructor:

public GraphNodeWritable(String data)

… taking a string with the same format and constructing a graph node 
object accordingly (unserialisation).



7

Part 2

● It is highly advised to check out the code for the provided InputFormat 
and OutputFormat classes.

● This will among other things allow you to view where the methods 
your class has to implement (get_serialized() as well as the 
unserialisation constructor) are called. You can also attempt to change 
the provided code to change the output if you wish (for example, alter 
the file name or the format).

● The four provided files are as follows:
GraphInputFormat.java
GraphOutputFormat.java
GraphRecordWriter.java
GraphRecordReader.java



8

Remarks

● You also need to prepare a proper input file.

● Your new input file must be a CSV file, with a « ; » separator, and must 
have two fields on each line: the first being the graph node identifier, 
the second the serialized string that describes the graph node itself as 
per your chosen format.

● As an alternative, an example CSV file is also provided:
http://cours.tokidev.fr/bigdata/tps/graph_input.csv
… if you decide to use this file, you will have to follow the same 
serialization format in your GraphNodeWritable class as is being used 
in it: every graph node field (neighbours, colour and depth) being 
separated by a « | » character.



9

Bonus

● If you finished early and wish to attempt another task, you can try and 
implement a depth-first-search algorithm to go through the same 
graph (instead of the current breadth-first search approach).

● Be advised, however, that implementing DFS using a map/reduce 
approach can be quite counter-intuitive.


