
MBDS 2019 – 2020

Hadoop / Big Data

Benjamin Renaut <renaut.benjamin@tokidev.fr>



TP 1

Map/Reduce methodology – Hadoop development



1

Setup

● Install VirtualBox (https://www.virtualbox.org/).

● Import the exercice session virtual machine .ova file.
It is a GNU/Linux Virtual Machine, running Debian x64.

● Start the virtual machine.

● Login with the following credentials. Login: mbds, Password: password. Read 
the explicative doc describing how to connect using PuTTY/SSH for 
convenience.

● Start Hadoop with the following command:

start-hadoop
(ignore warnings if any)

https://www.virtualbox.org/


2

Setup

● Check Hadoop is indeed working properly by doing:

hdfs dfsadmin -report

The command checks the HDFS status. It should print, among other things:

Live datanodes (1)

… with various information on the Data Node following.

● We will now compile the course example (the word counter).

The objective is to make sure your development/compilation environment is 
functional for the next steps, and to familiarize yourself with the process.



3

Setup

● To execute your Hadoop programs, you will need to generate a jar file, and 
then copy it to the virtual machine to execute it.

● For the development itself and to generate the jar, you have several options:

● Use IntelliJ, loading Hadoop dependencies using Gradle. A project archive is 
provided in this case.

● Use IntelliJ, loading Hadoop dependencies using Maven. A project archive is 
provided in this case as well.

● Use Eclipse, loading Hadoop dependencies using Maven. A project archive 
is provided in this case as well.

● Use another IDE, loading Hadoop dependencies manually or using Gradle or 
Maven.

● Compile the code and build the jar yourself manually directly on the virtual 
machine.



4

Setup

● If you with to use IntelliJ with Gradle, download and import the following 
project on your machine:
http://cours.tokidev.fr/bigdata/tps/hadoop_intellij_project_gradle.zip

● If you with to use IntelliJ with Maven, download and import the following 
project on your machine:
http://cours.tokidev.fr/bigdata/tps/hadoop_intellij_project_maven.zip

● If you with to use Eclipse with Maven, download and import the following 
project on your machine:
http://cours.tokidev.fr/bigdata/tps/hadoop_eclipse_project_maven.zip

● If you picked one of those three options, you can skip the following setup 
slides.



5

Setup

● If you wish to use another IDE, you can download the Java source code 
directly here:
http://cours.tokidev.fr/bigdata/tps/wordcount.zip

● And in order to load the Hadoop dependencies, you can either:

● Use the following Gradle configuration:
http://cours.tokidev.fr/bigdata/tps/build.gradle.txt

● Use the following Maven configuration:
http://cours.tokidev.fr/bigdata/tps/pom.xml.txt

● Load the jar dependencies manually in your project from the following 
archive:
http://cours.tokidev.fr/bigdata/tps/hadoop_3.1.3_deps.zip



6

Setup

● Finally, if you wish to directly compile and build the jar files in the virtual 
machine, you will need to copy your code there or directly edit your code 
inside the VM.

● Once the code is on the VM, you can then build the class files and then the jar 
file, bearing in mind the path hierarchy must match your classpath.

● As an example, to compile and build the jar file manually for this first example 
(the word counter), you would do in the VM:

● Downloading the code
wget http://cours.tokidev.fr/bigdata/tps/wordcount.zip

● Deflating it
unzip wordcount.zip && rm -rf wordcount.zip

http://cours.tokidev.fr/bigdata/tps/wordcount.zip


7

Setup

● Compiling it

javac WCount.java WCountMap.java WcountReduce.java

● Constructing the classpath hierarchy and moving the class files into it:

mkdir -p org/mbds/hadoop/wordcount
mv WCount*.class org/mbds/hadoop/wordcount/

● And, finally, generate the jar and clean up:

jar -cvf mbds_wcount.jar -C . org
rm -rf org



8

Setup

● No matter which setup you picked, you should now be able to compile and 
build the jar file for the example and move it to the VM.

● The code itself is that of the example shown in the course: the word counter.

● Start now by building the jar and copying it to the virtual machine; refer to the 
explicative doc for file copying using SSH if needed.



9

Setup

● Once your jar file has been moved to the VM, you should now download the 
example poem text file, and then move it to the HDFS filesystem in order for 
your program to be able to read it.

● The next steps assume your jar file is named « wordcount.jar » ; adjust the 
commands are required.

● Start by downloading the poem file in the virtual machine using the following 
command:
wget http://cours.tokidev.fr/bigdata/tps/poeme.txt

● Then move this file to the HDFS filesystem:
hadoop fs -put poeme.txt /



10

Setup

● Then check it is indeed available on HDFS:
hadoop fs -ls /
(the « poeme.txt » file must appear)

● Then, execute your program:

hadoop jar wordcount.jar org.mbds.hadoop.tp.WCount /poeme.txt /results

(adjust the filename and classpath as needed; also, note that we use /results to 
store our final results on HDFS, and that the program will fail if that directory 
already exists)

● We can then check our results on HDFS, for example by doing:
hadoop fs -ls /results
hadoop fs -cat /results/*



11

TP – Anagrams

● You must now write your own Hadoop program.

● OBJECTIVE: you are provided with a list of common english words. We wish to 
pinpoint which words are anagrams of one another.

As a reminded, two words are anagrams if their letters are the same but in 
different orders (such as « melon » and « lemon », for example).

● Download the common words file using the command:

wget http://cours.tokidev.fr/bigdata/tps/common_words_en_subset.txt

● Remark: you can use Streaming (as seen during the course) if you feel more 
comfortable using another langage instead of Java. The main purpose here is to 
implement an efficient M/R algorithm to solve the problem.

http://cours.tokidev.fr/bigdata/tps/common_words_en_subset.txt


12

Remarks

● Apply the map/reduce methodology as described during the course.

As yourself: what should my key be ? What is the common factors between 
anagrams, and how could that help ?

● Do not forget that you will need to copy the input data file to HDFS for 
processing.



13

TP – Sales analysis

● You must now write another map/reduce Hadoop program.

● We will work now on a sales record; you can download the file here:

http://cours.tokidev.fr/bigdata/tps/sales_world_10k.csv

● It is a CSV file. Please check its format; it has many columns. Also note it has a 
header ligne, which may be problematic when loading the file from your Hadoop 
implementation.

● We are interested in specifically five columns: the sales region (« Region »), the 
sales country (« Country »), the type of item bought (« Item Type »), the sales 
channel (« Sales channel » : online or offline), and finally the total sale profit 
(« Total profit »).



14

TP – Sales analysis

● Your program should be able to perform various analysis tasks.

● It is highly advised to allow your program to adapt its behaviour / pick an 
analysis task depending on a command line argument.

● Alternatively and if you don’t see how to perform this, you can implement a 
separate software for each of the required tasks.

● Remark: the Configuration object that we create in the Driver class can also be 
obtained later on from the Map and Reduce classes; and it also allows passing 
values between those classes, which may prove useful for this program. You are 
advised to look for the way to obtain the Configuration instance from the 
context object in the map and reduce classes, as well as looking up the getter 
and setter methods for the Configuration class.



15

TP – Sales analysis

● Your software should be able to perform the following tasks:

● Obtain the total profit for any given world region.

● Obtain the total profit for any given country.

● Obtain the total profit for any given item type.

● For each item type, provide:
● How many sales were performed online.
● How many sales were performed offline.

… and for each of those quantities, how much the combined total profit for 
those sales was.


